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Abstract In this chapter, we consider stealthy cyber- and physical attacks against
control systems, where malicious adversaries aim at maximizing the impact on con-
trol performance, while simultaneously remaining undetected. As an initial goal,
we develop security-related metrics to quantify the impact of stealthy attacks on
the system. The key novelty of these metrics is that they jointly consider impact
and detectability of attacks, unlike classical sensitivity metrics in robust control and
fault detection. The final objective of this work is to use such metrics to guide the
design of optimal resilient controllers and detectors against stealthy attacks, akin to
the classical design of optimal robust controllers. We report preliminary investiga-
tions on the design of resilient observer-based controllers and detectors, which are
supported and illustrated through numerical examples.

1 Introduction

Cyber-security of control systems has been receiving increasing attention in recent
years. Overviews of existing cyber-threats and vulnerabilities in networked control
systems has been presented by different authors (Cárdenas et al, 2008; Teixeira et al,
2015b). Adversaries endowed with rationality and intent are highlighted as one of
the key items in security for control systems, as opposed to natural faults and distur-
bances. Therefore, these adversaries may exploit existing vulnerabilities and limita-
tions in anomaly detection mechanisms and remain undetected. In fact, Pasqualetti
et al (2013) uses tools from geometric control to study such fundamental limitations
and characterizes a set of stealthy attack policies for networked systems modeled by
differential-algebraic equations. Related stealthy attack policies were also consid-
ered in Smith (2015); Teixeira et al (2015b), while the work by Fawzi et al (2014)
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characterizes the number of corrupted sensor channels that cannot be detected dur-
ing a finite time-interval. A common thread within these approaches is that stealthy
attacks are constrained to be entirely decoupled from the anomaly detector’s output.
Classes of attacks that are in theory detectable, but hard to detect in practice, have
not received as much attention.

Another important direction is to analyze the potential damage of stealthy at-
tacks. Recently, Bai et al (2017) investigated the detectability limitations and per-
formance degradation of data injection attacks in stochastic control systems. The
impact of stealthy data injection attacks on sensors is also investigated in Mo and
Sinopoli (2016), which characterized the set of states reachable by stealthy adver-
sary. The work in Teixeira et al (2015c) formulated the impact of data injection at-
tacks in finite time-horizon as a generalized eigenvalue problem, whereas Umsonst
et al (2017) considered an alternative formulation that allowed for the impact to be
characterized as the solution to a convex optimization problem. A similar approach
was considered in Shames et al (2017) for impulsive attacks.

While this set of results is useful to assess the impact of stealthy cyber-attacks
on control systems, they cannot be used to directly design more resilient controllers,
since the optimization problems have a complex non-convex dependence on the
design parameters.

The impact and detectability of data injection attacks on discrete-time has also
been jointly considered in the author’s previous work (Teixeira et al, 2015a). The
impact of stealthy attacks is characterized as the solution to a convex problem that
has a remarkable similarity with existing optimization-based techniques to design
optimal H∞ robust detectors and controllers (Wang et al, 2007; Scherer and Wei-
land, 2010).

As main contributions of this chapter, we revisit the control system security prob-
lem in Teixeira et al (2015a), but now for continuous-time systems. The goal is to
investigate possible metrics with which to analyze the security of control systems
to malicious adversaries that aim at maximizing impact while simultaneously mini-
mizing detection. Classical metrics in robust control and fault detection are revisited,
namely the H∞ norm Zhou et al (1996) and the H− index (Wang et al, 2007). Their
suitability to security analysis is discussed, from which we conclude that they have
limited applicability to security, as they consider impact and detection separately.
Then, a first heuristic approach to integrate these metrics together is taken and fur-
ther examined, which also shares some of the limitations of the classical metrics.

The continuous-time version of the security metric developed in Teixeira et al
(2015a) is then presented: the output-to-output gain. Results characterizing the
metric are given, based on which an efficient computation approach is proposed.
Furthermore, fundamental limitations of this metric are also characterized, which
are aligned with well-known fundamental limitations in the detectability of at-
tacks (Pasqualetti et al, 2013; Bai et al, 2017).

Finally, a first attempt to use this security metric in the design of optimal re-
silient controllers and detectors against stealthy attacks are investigated. An heuris-
tic method to search for sub-optimal solutions is presented, based on alternating
minimization.
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Fig. 1 Networked control system under cyber-physical attacks.

The discussion and results in this chapter are illustrated and supported by numer-
ical experiments on a single closed-loop system, with small examples distributed
through the different sections of the chapter.

2 Closed-loop system under cyber and physical attacks

This section details the attack scenario and the closed-loop system structure under
study, following a similar modeling framework as in Teixeira et al (2015b).

Consider a control system depicted with a physical plant (P) controlled over a
communication network, and an integrated observer-based feedback controller and
anomaly detector (F). The closed-loop system under attacks is depicted in Figure 1,
and its dynamics are described by the following equations:

P :


ẋp(t) = Apxp(t)+Bpũ(t)+Ep f (t)

yc(t) =Cpxp(t)+Dpũ(t)

ym(t) =Cmx(t)

F :


˙̂xp(t) = Apx̂(t)+Bpu(t)+Kyr(t)

ŷm(t) =Cmx̂(t)

u(t) = Lx̂(t)

yr(t) = ỹm(t)− ŷm(t),

(1)

where xp ∈Rnx denotes the state of the plant, ym(t)∈Rny is the measurement signal
transmitted by the sensors from the plant to the observer, u∈Rnu is the control signal
computed by the observer-based controller and then transmitted to the actuator, and
f (t) ∈ Rn f is a physical fault signal, possibly inserted by a malicious adversary.

The level of performance of the closed-loop system over a given time-horizon
[0, T ] is measured by the quadratic control cost
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J (x(t), ũ(t))[0,T ] ,
∫ T

0
‖yc(t)‖2

2 dt , ‖yc‖2
L2[0,T ]

. (2)

The signal yc(t) ∈ Rnc is thus denoted as the performance output.
The communication network may be subject to malicious cyber-attacks, which

are able to hijack, read, and re-write the data packets flowing through the network.
The possibly compromised measurement and actuator signals at the corresponding
receiver are denoted by ỹm(t) and ũ(t), respectively.

The observer produces an estimate of the plant’s state, x̂(t), which has a dual
role. On the one hand, the estimate is the basis for computing the control input
u(t) that steers the system. On the other hand, the observer’s estimate is also used
to generate a so-called residual yr(t), which is evaluated to detect the presence of
anomalies. Thus, the residual is also called as the detection output. In particular, we
suppose that an anomaly is detected if the energy of the residual signal over a given
time-horizon [0, T ] exceeds a certain threshold, i.e.,

‖yr‖2
L2[0,T ]

> τ
2
r . (3)

In the remainder of the chapter, without loss of generality, we let τr = 1.

2.1 Attack scenario and adversary model

In this chapter, we consider the class of false-data injection attacks on data ex-
changed with sensors and actuators, possibly combined with a physical attack f (t).
The cyber-attack component can be modeled as additive corruptions of the sensor
and actuator signals, described by

ũ(t) = u(t)+∆u(t)

ỹm(t) = ym(t)+∆ym(t),

∆u(t) = Γuau(t)

∆ym(t) = Γyay(t),
(4)

where au(t) ∈ Rmu and ay(t) ∈ Rmy are the data corruptions added to the actuator
and sensor signals, respectively, and Γu ∈ Bnu×mu and Γy ∈ Bny×my are binary-valued
matrices indicating which mu and my channels can be corrupted by the adversary.
Additionally, we consider that the adversary can also stage a physical attack through
the fault signal f (t), possibly in coordination with the cyber-attack on sensor and
actuator data.

In terms of the adversary model, we consider the worst-case scenario where the
adversary has perfect knowledge of the closed-loop system model in (1).

Moreover, concerning the intent of the malicious adversary, we suppose that the
attacker has two objectives. First, the adversary aims at corrupting the sensor and
actuator data so that the closed-loop system performance is deteriorated as much as
possible. This means that the adversary aims at maximizing the control cost (2). Sec-
ond, the attacker wishes to minimize the detection alarms (3), and therefore avoid
being detected.
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Fig. 2 The quadruple tank process, controlled through an LQG controller, under a physical attack.
The physical attack may be modeled with Γu = Γy = /0 and Ep = e1.

Example 1. Throughout the chapter, the quadruple water tank system (Johansson
et al, 1999) will be used as a reoccurring example. The plant is depicted in Figure 2,
which illustrates one of the attack scenarios considered in this chapter.

The plant consists of four water tanks, with four states associated with the water
level of each tank, two measurements signals corresponding to the water level in
two of the tanks, and two actuators corresponding to two water pumps. Each water
pump delivers water to two tanks, as depicted in Figure 2, The flow ratio from each
pump to the respective tanks is determined by a valve. The valves are configured so
that the plant possesses one unstable transmission zero from ũ(t) to ym(t).

The observer-based controller is implemented as a LQG controller, by means of a
Kalman Filter that feeds its state estimate to an LQR controller. The LQG controller
is designed as to minimize the quadratic cost (2). The closed-loop system dynamics
are described by (1), with the data:

Ap =


−0.1068 0 0.0275 0

0 −0.0903 0 0.0258
0 0 −0.0275 0
0 0 0 −0.0258

 , Bp =


0.0802 0

0 0.0807
0 0.1345

0.1337 0

 ,
Cm =

[
0.2000 0 0 0

0 0.2000 0 0

]
,

Cp =


6.3246 0 0 0

0 6.3246 0 0
0 0 4.4721 0
0 0 0 4.4721
0 0 0 0
0 0 0 0

 , Dp =


0 0
0 0
0 0
0 0

3.1623 0
0 3.1623

 ,

L =

[
−0.5997 −0.2224 0.1003 −1.2153
−0.1916 −0.6606 −1.1847 0.0816

]
, K =


0.0345 0.0150
0.0150 0.0414
0.0456 0.0633
0.0561 0.0515

 .
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The closed-loop system is under attack on a subset of the sensors and actuators,
possibly complemented with a physical attack that can affect each water tank in-
dependently. In particular, throughout the chapter we shall discuss different attack
scenarios where the adversary corrupts at most two communication channels and
physically attacks at most two water tanks. The former is modeled through Γu and
Γy, while the latter is captured by having Ep = [ei ek] ∈ R4×2, where ei is the i-th
column of the identity matrix.

As a first example, suppose that the adversary corrupts both pumps, which is
modeled by (4) with Γu = I and Γy = /0. In this case, it has been previously shown in
the literature (Teixeira et al, 2012, 2015b) that an attack on the actuators mimicking
the unstable transmission zero dynamics will have an arbitrarily large impact on
the plant’s states, while remaining undetectable. For our specific system, the attack
signal could be designed as a(t) = δe0.0178t [−0.2243 0.2200]>, for a sufficiently
small scalar δ . Such an attack will have a negligible effect on the detection output,
while driving the states, and thus the control cost, towards infinity.

2.2 Toward metrics for security analysis

Given the control system and attack scenario previously described, the next sections
look into possible metrics for characterizing the worst-case attack, its impact on
performance, and its level of detectability.

For simplicity, we will re-write the dynamics of the closed-loop system un-
der attack in a more compact form. To this end, let us define the estimation error
as e(t) , xp(t)− x̂p(t), the augmented state of the plant and observer as x(t) ,[
xp(t)> e(t)>

]> and the augmented attack signal as a(t),
[
au(t)> ay(t)> f (t)>

]> ∈
Rna . The closed-loop dynamics (1) under the considered attack (4) are compactly
described by

ẋ(t) = Ax(t)+Ba(t)

yc(t) =Ccx(t)+Dca(t)

yr(t) =Crx(t)+Dra(t),
(5)

where the matrices are given by

A =

[
Ap +BpL −BpL

0 Ap +KCm

]
, B =

[
BpΓu 0 Ep
BpΓu KΓy Ep

]
,

Cc =
[
Cp +DpL −DpL

]
, Dc =

[
DpΓu 0 0

]
,

Cr =
[
0 Cm

]
, Dr =

[
0 Γy 0

]
.

(6)

Furthermore, we shall denote Σc , (A,B,Cc,Dc) and Σr , (A,B,Cr,Dr) as the
realizations of the closed-loop system as seen from the perspectives of attack a(t)
to the outputs yc(t) and yr(t), respectively.
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Note that the adversary model places no explicit constraint on the attack signal
a(t). Therefore, we will consider generic attack signals that lie in the so-called ex-
tended L2 space, denoted as L2e. More specifically, L2e is the space of signals that
have finite energy over all finite time horizons, but do not necessarily need to have
finite energy in the infinite horizon. Formally, this signal space can be defined as
L2e ,

{
a : R+→ Rn | ‖a‖L2 [0,T ]

< ∞, ∀T < ∞

}
.

Given the above setup, as the start of our discussion, the classical metrics in
robust control and fault detection are first examined, and we discuss to what extent
they can or can not capture the attack scenario described in the previous section.

3 Classical metrics in robust control and fault detection

Typical worst-case metrics in control are the largest and smallest gains of a dy-
namical system. The largest gain is commonly used to capture the maximum am-
plification that the input can have on the output. On the contrary, the smallest gain
captures the least amplification that the input has on the output. When the amplifi-
cation is measured in terms of energy (i.e., L2 signal norm), the largest and smallest
gains are respectively the H∞ norm and the H− index.

3.1 The H∞ norm

The H∞ norm is a classical metric in robust control, capturing the largest energy
amplification from input to output. In the context of our attack scenario, the adver-
sary is interested in maximizing the energy of the performance output, yc. Hence,
we are interested in the worst-case (largest) amplification from the attack signal to
the performance output, which is captured by the H∞ norm of the system (5) from
a(t) to yc(t), namely ‖Σc‖H∞

.
There are multiple equivalent characterizations of the H∞ norm. An appealing

one for our purposes is the formulation as the following optimal control problem:

‖Σc‖2
H∞

, sup
a∈L2e,x(0)=0

‖yc‖2
L2

s.t. ‖a‖2
L2
≤ 1

(7)

Yet another useful interpretation of the H∞ norm is that of the maximum L2
amplification of the system, from input to output, i.e., ‖Σc‖2

H∞
= γ ≥ 0 implies

‖yc‖2
L2
≤ γ‖a‖2

L2
, x(0) = 0. (8)

Finally, defining Gc(s) =Cc (sI−A)−1 B+Dc, the H∞ norm can also be related
to the singular values of the system Σc:
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σ c(w)2 ≤ sup
w>0

σ c(w)2 = γ, (9)

where

σ c(w)2 , max
a∈Cna

‖Gc( jw)a‖2

‖a‖2
2

.

The H∞ norm has well-known properties, for instance that the ‖Σc‖H∞
is un-

bounded if and only if the system Σc is unstable. Moreover, note that the constraint
in (7) essentially restricts the attack signal to have finite energy over infinite hori-
zons. This in turns implies that the worst-case amplification does not consider attack
signals with possibly infinite energy, namely non-vanishing signals, such as strictly
increasing exponential signals and ramps.

Remark 1. Recalling Example 1 with the quadruple tank under attack on both actu-
ators, we observe that the exponentially increasing, undetectable attack described in
Example 1 is not considered by the H∞ norm. Such a potentially harmful attack is
therefore not included in analysis based on the H∞ norm.

Furthermore, the H∞ norm does not give any guarantees to the detectability of
the attack signal. Hence, the worst-case attack signal may turn out to be easily de-
tectable, despite resulting in the worst amplification to the performance output (with
respect to other input signals with finite energy).

Example 2. Consider the quadruple tank system of Example 1, but now under at-
tack on the first actuator (pump 1, corresponding to the first entry in the vector
u(t)). Computing the H∞ norm for such a scenario, and in particular examining
the largest singular value σ c(w), indicates that the worst-case frequency is w = 0.
Hence, constant attacks will result in the worst-case amplification of the cost. For
a constant attack of the form a(t) = 1, the worst-case in the H∞ sense, the RMS
of both the performance output and the detection output are shown in Fig. 3 (blue
dotted line). Another attack signal at a higher frequency, but with the same level of
impact on performance at steady-state, is also depicted (red dash-dotted line). As
it can be observed from the lower plot, the new attack has a much lower level of
detectability. From a security perspective, such an attack is thus of higher concern
than the worst-case attack in the H∞ sense.

As illustrated by the above discussions and the latter example, we need a metric
that also accounts for detectability of the attack signal.

3.2 The H− index:

As opposed to the H∞ norm, the H− index is a classical metric in fault detec-
tion, capturing the smallest energy amplification from input to output. In the context
of our attack scenario, the adversary is interested in minimizing the energy of the
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Fig. 3 The RMS values over time of the performance and detection outputs, yc and yr , for different
attack signals on actuator 1. The worst-case attack, in the H∞ sense, is depicted in dotted blue line.
For the same level of impact on performance, another attack signal at a higher frequency (red
dash-dotted line) is shown to have a much lower level of detectability.

detection output, yr. Therefore, we are interested in the worst-case (smallest) ampli-
fication from the attack signal to the detection output, which is captured by the H−
index of the system (5) from a(t) to yr(t), namely ‖Σr‖H− .

Similarly as for the H∞ norm, there are multiple possible characterizations of
the H− index. First, we have again the formulation as the following optimal control
problem:

‖Σr‖2
H− , inf

a∈L2e,x(0)=0
‖yr‖2

L2

s.t. ‖a‖2
L2
≥ 1.

(10)

Second, a useful interpretation of the H− index is that of the minimum L2 am-
plification of the system, i.e., ‖Σr‖2

H−
= γ ≥ 0 implies

‖yr‖2
L2
≥ γ‖a‖2

L2
, x(0) = 0. (11)

Finally, defining Gr(s) =Cr (sI−A)−1 B+Dr, the H− index can also be related
to the singular values of the system Σr:

σ r(w)
2 ≥ inf

w>0
σ r(w)

2 = γ, (12)

where
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σ r(w)
2 , min

a∈Cna

‖Gr( jw)a‖2

‖a‖2
2

.

Remark 2. The original definition of the H− in the fault detection literature (Liu
et al, 2005) was based on the singular values (12). This definition is actually more
conservative than the new formulations based on optimal control (10) and energy
amplification (11). Specifically, the formulation in (12) implicitly constrains the in-
put signal to have finite energy, and thus lie in L2. On the other hand, (10) and (11)
allow the input signal to lie in lie in L2e and thus have infinite energy in infinite
time horizons.

The original H− index defined in (12) is well-known for its limitation in strictly
proper systems, in which case σ r(w) continuously decreases for high frequencies,
and thus H− = 0. Moreover, as per Remark 2, it again restricts the attack signal to
have finite energy over infinite horizons. Hence, attacks that are typically dangerous,
but hard to detect, such as incipient signals are not considered by the original H−
index.

The new formulations of the H− index, namely (10) and (11) address some of
the conservatism of (12), and consider, for instance, the presence of unstable zeros
in the system that will render H− = 0, which was neglected in (12).

However, the H− index does not give any measure to the impact of the attack
signal on the closed-loop system performance. Hence, the worst-case attack signal
may turn out to be hard to detect, but at the same time result in negligible impact on
performance.

Example 3. Consider the quadruple tank system of Example 1, but now under attack
on the second actuator (pump 2, corresponding to the second entry in the vector
u(t)). Computing the H− index for such a scenario, and in particular examining the
smallest singular value σ r(w), indicates that the detectability deteriorates monotoni-
cally with increasing frequencies. Thus the worst-case frequency is w = ∞, in which
case ‖Σr‖H− = 0. Hence, attack signals with very high frequency will result in the
worst-case detectability at the detection output.

The RMS of the performance and detection outputs for different attacks are il-
lustrated in Fig. 4, where the attack magnitudes have been adjust so that all attacks
have the same level of detectability at steady-state (i.e., same RMS value for the
detection outputs ).

As seen from the magnitude of the different attacks, a large magnitude is required
for obtaining the same level of detectability, which confirms that the detectability in
the H− sense decreases with frequency.

However, worse detectability alone does not imply a larger impact in perfor-
mance. In fact, the attack with the least impact in performance (depicted by dash-
dotted red plots) is less detectable than the constant attack (dotted blue plots).

Moreover, the impact on performance is not monotonic with frequency. Indeed,
we observe that, for the same level of detectability, the most and the least detectable
attacks (in dotted and dashed lines, respectively) yield the same RMS value for the
performance output, and thus have the same level of impact.
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Fig. 4 The RMS values over time of the performance and detection outputs, yc and yr , for different
attack signals on actuator 2. For the same level of detectability, the impact on performance does
not decrease with the frequency.

3.3 Mixing H∞ and H−

As illustrated in the previous subsection, the H∞ norm and the H− index cannot
simultaneously capture both of the aspects that define malicious attacks: the aim to
maximize impact on performance, while simultaneously minimizing detection.

Since H∞ addresses the impact on performance, while H− encodes detectability,
a natural first approach would be to attempt to combine both metrics into one single
quantity. However, as seen in Example 4, the worst-case frequency differs between
the two metrics, which means that these metrics look into distinct worst-case input
signals.

As a first attempt to combine the essence of these metrics, and develop a security
metric, we consider instead the ratio between the singular values, µ(w), and define
a first heuristic security metric as µ , with

µ(w),
σ c(w)2

σ r(w)2 ≤ sup
w>0

σ c(w)2

σ r(w)2 = µ, (13)

There are, however, two main flaws in this approach. The first is that it con-
straints the attack signal to have finite energy, i.e. to lie in L2, and hence only
considers vanishing signals. For instance, as for the H− index, the presence of un-
stable zeros would not be considered, while it is well-known that attacks replicating
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the unstable zero-dynamics are not detected and still have a dramatic impact on the
system (Pasqualetti et al, 2013; Teixeira et al, 2015a).

The second is that, for multiple-input systems (e.g., when multiple sensors and
actuators are corrupted), µ(w) does not consider the spatial coordination of the dif-
ferent attack channels to achieve a large impact and worse detection. In other words,
the spatial coordination between attack channels is encoded separately in the def-
initions of σ c(w) and σ r(w), and thus each singular value will consider different
worst-case attack direction (or singular vector).

Example 4. Consider the scenario in Example 3, where the quadruple tank system is
under a cyber-attack on the second actuator. The singular values σ c(w) and σ r(w)
are depicted in Fig. 5, as well as their ratio µ(w).
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Fig. 5 The singular values σ c(w) and σ r(w) (left) and their ratio µ(w) (right) for a cyber-attack
on actuator 2.

As discussed in Example 3 and observed from σ r(w) in the figure, the detectabil-
ity deteriorates monotonically with the frequency as ‖Σr‖H− converges to 0. Hence,
attack signals with very high frequency will result in the worst-case detectability at
the detection output. This behavior is a natural consequence of the plant dynamics:
in the absence of a direct feed-through term from u(t) to ym(t), actuation signals
with very high frequency are naturally blocked by the system dynamics, and will
not appear in the measured output.

On the other hand, by observing σ c(w) we conclude that the worst-case impact
occurs at low frequencies. However, note that the σ c(w) converges to a non-zero
constant as the frequency increases. This occurs due to the nonzero feed-through
term Dc 6= 0, which means that the attack on the actuator has a direct impact on the
control cost (2).
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Connecting the observations from the two classical metrics, we conclude that
attack signals with high frequencies will be hard to detect, while having a non-zero
impact on the system. The worst-case would indeed be to have an infinitely high
frequency, in which case the attack would be completely undetectable by yr, while
still having a non-zero impact on yc. This is in fact correctly captured by the mixed
metric µ(w), which tends to infinity as the frequency increases.

The above example illustrates that the heuristic metric µ(w) can, for certain sce-
narios, correctly capture the worst-case malicious attacks. In particular, as only one
signal was attacked in Example 4, there was no spatial coordination between attack
signals to be considered. Next we briefly discuss an example where such spatial
coordination is crucial.

Example 5. Consider the scenario where Ep = Bp, that is, the adversary is able to
stage a physical attack through some additional pumps other than the plant’s actua-
tors, but with identical effect on the system’s states. The singular values σ c(w) and
σ r(w), as well as their ratio µ(w), are depicted in Fig. 6.
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Fig. 6 The singular values σ c(w) and σ r(w) (left) and their ratio µ(w) (right) for a cyber-attack
on actuator 2.

Since the attack does not affect the actual actuators, there is no direct feed-
through term from attack to any of the outputs (i.e., Dc = Dr = 0). Therefore, both
the impact and the detectability decay to zero with the frequency. Moreover, it turns
out that they decay at the same slope, which leads to a constant high frequency
asymptote in µ(w). By observing µ(w), one would be led to conclude that the
worst-case attack with maximum impact and minimum detectability happens for
low frequencies.

On the contrary, there exists an attack that is undetectable and still leads to ar-
bitrarily large impact. As discussed in Example 1, the plant has one unstable zero
from the actuators to the measurement output, which can thus be exploited by the
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physical attack, since Ep = Bp. Such attack is non-vanishing and requires the co-
ordination of both water pumps, two aspects that are not captured by the heuristic
metric µ(w).

As motivated by the above discussions and examples, the heuristic metric µ(w)
correctly captures the impact of worst-case stealthy attacks is some scenarios (Ex-
ample 4), but fails in other cases where spatial coordination is exploited by the ad-
versary (Example 5). Thus, there is a need for an over-arching security metric that
correctly tackles strategic stealthy attacks in general scenarios. One such security
metric is described in the next section.

4 A security metric for analysis and design: the output-to-output
gain

The previous section described the classical metrics in control and fault detection,
and illustrated their shortcomings in capturing simultaneously the impact and the
detectability of malicious attacks, which also carried over to the heuristic metric
µ(w). In this section, a new security metric that can successfully consider these two
aspects is discussed and characterized. Moreover, we show that such a metric can
be the basis for designing controllers and detectors for increased resiliency against
adversaries.

4.1 Security analysis with the output-to-output gain

A security metric simultaneously integrating the impact on performance and the de-
tectability of attacks was proposed in Teixeira et al (2015a): the output-to-output
gain (OOG). This metric is tailored to the malicious adversary objectives of max-
imizing impact while remaining undetected, being defined as the optimal control
problem

‖Σ‖2
yc←yr , sup

a∈L2e,x(0)=0
‖yc‖2

L2

s.t. ‖yr‖2
L2
≤ 1.

(14)

As before, a useful interpretation of the OOG is that of the maximum L2 ampli-
fication of the system, but now in terms of the two outputs ‖yc‖2

L2
and ‖yr‖2

L2
, i.e.,

‖Σ‖2
yc←yr = γ ≥ 0 implies

‖yc‖2
L2
≤ γ‖yr‖2

L2
, x(0) = 0. (15)

A few remarks are in order. First, note that the attack signal is not a priori con-
strained to be a vanishing signal, as opposed to the H∞ norm and the original H−
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index. Thus, the OOG can consider unstable zeros, as well as exponentially increas-
ing signals and ramps.

Second, the gain characterization is rather insightful. Recalling that no detection
alarm is triggered while ‖yr‖2

L2
≤ 1, the condition (15) implies a guaranteed bound

on the impact in performance for any attack that is not detected, namely, ‖yc‖2
L2
≤

γ‖yr‖2
L2
≤ γ .

As such, the OOG seamlessly characterizes the worst-case impact on perfor-
mance of undetected, possibly non-vanishing attacks.

Finally, we refer to a complete characterization of the OOG in terms of dissipa-
tive systems theory (Trentelman and Willems, 1991), as summarized in the follow-
ing statement.

Proposition 1. Consider the continuous-time system Σ ,
(

A,B,
[
C>c C>r

]>
,
[
D>c D>r

]>),

as described by (5), which is assumed to be controllable. Define Gr(s) = Cr(sI−
A)−1B+Dr and Gc(s) =Cc(sI−A)−1B+Dc.

The following statements are equivalent:

1. The OOG of the system satisfies the bound ‖Σ‖2
yc←yr ≤ γ;

2. The system Σ is dissipative w.r.t. the supply rate s(x(t),a(t)) = γ‖yr(t)‖2
2 −

‖yc(t)‖2
2;

3. For all trajectories of the system with T > 0 and x(0) = 0, we have∫ T

0
s(x(t),a(t))dt ≥ 0;

4. There exists a P� 0 such that the following Linear Matrix Inequality holds:

R(Σ ,P,γ),
[

A>P+PA PB
B>P 0

]
− γ

[
Cr>
D>r

][
Cr Dr

]
+

[
Cc>
D>c

][
Cc Dc

]
� 0. (16)

Additionally, a necessary condition of the previous statements to hold is that the
following frequency-domain condition holds:

γGr(s̄)>Gr(s)−Gc(s̄)>Gc(s)� 0,∀s ∈ C, (17)

with s 6∈ λ (A), Re(s)≥ 0.

The above result follows directly from solving the optimal control problem (14)
using dissipative systems theory (Willems, 1972), akin to the discrete-time case
investigated in Teixeira et al (2015a), and recalling key results in dissipative sys-
tem theory for linear systems with quadratic supply rates (Trentelman and Willems,
1991).

Note that statement 3 in Proposition 1 is precisely equivalent to the gain condition
presented in (15). Moreover, and most importantly, the LMI in statement 4 leads to
a computationally efficient approach to compute the OOG of a given system. In fact,
the OOG can be obtained by solving the following convex optimization problem
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‖Σ‖2
yc←yr = min

P�0,γ>0
γ

s.t. R(Σ ,P,γ)� 0.
(18)

Finally, the inequality in (17) provides a necessary frequency-domain condition
for the OOG to be bounded. This is in contrast to similar frequency-domain condi-
tions for the classical metrics in the previous subsections, which are both necessary
and sufficient, and also significantly less involved than (17).

A necessary and sufficient frequency-domain condition was first derived in Moli-
nari (1975). Unfortunately, this condition involves an infinite-dimensional inequal-
ity on the complex plane whose evaluation is not tractable (Trentelman, 1999). In
pursuit of tractable conditions, under certain regularity assumptions, it was shown
that (17) was also sufficient, see Gannot (2019, Section 2.3). Under milder regu-
larity assumptions, a frequency-domain condition based on Pick matrices was also
proposed in Trentelman and Rapisarda (2001).

Unfortunately, while the classical sensitivity metrics do satisfy the regularity as-
sumptions investigated in the literature, the general formulation of the OOG does
not. For instance, the case with Dc = Dr = 0 does not enjoy such regularity prop-
erties. Nonetheless, the necessary condition (17) points to useful structural results
characterizing degenerate cases of the OOG, where the gain is unbounded regard-
less of the choice of controller and anomaly detector. Furthermore, it also provides
a lower bound to the OOG, and it has a tight connection to the heuristic metric µ(w)
defined in (13). These two aspects are further explored in the following.

4.1.1 Structural results on the output-to-output gain

The frequency-domain condition(17) is centered on the notion of unstable invariant
zeros of a transfer function G(s), that is, values s ∈ C (possibly at infinity) with
Re(s) ≥ 0 such that there exists a ∈ Cna for which G(s)a = 0. The precise result is
as follows.

Proposition 2. Consider the continuous-time system Σ ,
(

A,B,
[
C>c C>r

]>
,
[
D>c D>r

]>),

as described by (5), which is assumed to be controllable. Define Gr(s) = Cr(sI−
A)−1B+Dr and Gc(s)=Cc(sI−A)−1B+Dc. The OOG gain of the system, ‖Σ‖2

yc←yr ,
is bounded if, and only if, all the unstable invariant zeros of Gr(s) (including zeros
at infinity and their multiplicity) are also zeros of Gc(s).

A variation of this result has first appeared in Teixeira et al (2015a), for discrete-
time systems. These conditions point to fundamental limitations in security under
the presence of unstable zeros (including zeros at infinity), as observed in similar
contexts in the literature (Pasqualetti et al, 2013; Mo and Sinopoli, 2012; Teixeira
et al, 2012, 2015b). Such limitations are examined in the following example.

Example 6. Consider the scenarios in Examples 4 and 5. Computing the OOG for
both scenarios, by solving the optimization problem (18), would yield an unbounded
value for the gain. This result is in line with Proposition 2, as discussed below.
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In Example 4, the multiplicity of the zeros at infinity of Gr(s) is higher than
that of Gc(s), which leads to the increasing high-frequency asymptote of µ(w), and
results in an unbounded OOG. As for Example 5, the system Gr(s) has one unstable
zero that is not a zero of Gc(s) (since the direct term Dc is non-zero).

Since invariant zeros are not changed with output-feedback, one may conclude
that the inherent zero structure of the open-loop system plays a crucial role in the
sensitivity to stealthy attacks, regardless of the control and monitoring algorithms.

4.1.2 A lower bound on the output-to-output gain

Recalling the frequency-domain inequality (17), and inspired in (18), one can define
the following variable:

γ̂ , min
γ>0

γ

s.t. γGr(s̄)>Gr(s)−Gc(s̄)>Gc(s)� 0, ∀s 6∈ λ (A), Re(s)≥ 0.
(19)

In the case where frequency-domain inequality (17) is both necessary and suffi-
cient, the constraints (17) and the LMIs in statement 4 would be equivalent. Such an
equivalence would transfer also to (18) and (19), which means that the OOG would
be characterized as ‖Σ‖2

yc←yr = γ̂ . However, as previously discussed, the frequency-
domain inequality (17) is only necessary in general, and thus γ̂ is generally only a
lower bound of the OOG, i.e., ‖Σ‖2

yc←yr ≥ γ̂ .
Not surprisingly, the lower bound γ̂ has a close connection to the singular values

of the system. In fact, γ̂ can be computed as

γ̂ = sup
s∈S

γ(s),

where S , {s ∈ C : s 6∈ λ (A), Re(s)≥ 0} and γ(s) is defined as

γ(s), min
γ≥0

γ

s.t. γGr(s̄)>Gr(s)−Gc(s̄)>Gc(s)� 0.
(20)

Note that γ(s) essentially corresponds to the maximum generalized eigenvalue of
the matrix pencil (Gc(s̄)>Gc(s), Gr(s̄)>Gr(s)), which may be interpreted as a gen-
eralized singular value of the system.

Finally, we highlight one interesting relation between the lower bound γ̂ (γ(s))
and the heuristic µ (µ(w)). Consider the class of single-input systems, in which
case Gr(s) and Gc(s) are complex-valued vector functions, denoted as gr(s) ∈ Cnr

and gc(s) ∈ Cnc respectively. In such a case, the function γ(s) can be rewritten as

γ(s) =
‖gc(s)‖2

2

‖gr(s)‖2
2

. Observing that ‖g(s)‖2
2 = σ(s)2 = σ(s)2, one can re-write γ(s) as
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γ(s) =
σ c(s)2

σ r(s)2 , from which it follows that γ̂ is bounded from below by µ , since

γ̂ = sup
s∈S

γ(s)≥ sup
s∈S

⋂
Re(s)=0

γ(s) = sup
w6∈λ (A)

µ(w) = µ.

Hence, we conclude that, for single-input systems (i.e., where the adversary cor-
rupts only one resource, such that na = 1), the heuristic metric µ(w) constructed in
Section 3.3 can provide a lower bound to ‖Σ‖2

yc←yr .

4.2 Security metrics-based design of controller and observer

The security metric described in the previous section, the output-to-output gain,
bears strong similarities to the classical H∞ norm and the H− index. This points to
the possibility of using the OOG to design controllers and anomaly detectors, as it
happens with the classical metrics. In this section, we make a first exploration of a
possible design for continuous-time systems, and discuss some of its properties.

Recall the closed loop system under attack Σ described by (5). Naturally, Σ de-
pends on the actual choices of the observer and feedback gain matrices K and L, re-
spectively. To highlight this dependency in this section, we use the notation Σ(K,L).

From a design perspective, we wish to choose the matrices K and L that minimize
the worst-case impact of attacks that are not detected. In summary, we look into
approaches for choosing K and L such that the OOG gain of the corresponding
system is minimized. Formally, the optimal K and L can be characterized as the
optimal solutions to the following (non-convex) optimization problem

min
P�0,γ>0,K,L

γ

s.t. R(Σ(K,L),P,γ)� 0,
(21)

which follows directly from items 3 and 4 in Proposition 1.
Due to the products A>P and C>c Cc in R(Σ(K,L),P,γ) (cf. 4 in Proposition 1),

the constraint in (21) is a Bilinear Matrix Inequality, which renders the optimization
problem non-convex. Applying the Schur complement lemma allows us to remove
the quadratic term C>c Cc, obtaining instead the following problem

min
P�0,β>0,K,L

β

s.t.

A>P+PA PB C>c
B>P 0 D>c
Cc Dc β I

−β

Cr>
D>r
0

[Cr Dr 0
]
� 0,

(22)

where the optimal OOG is given by ‖Σ(K,L)‖yc←yr = β =
√

γ . Given that Cr and Dr
do not depend on K and L, the only cross terms between decision variable are now
in A>P+PA and B>P. Although the constraint is still a BMI, we can now search for
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a sub-optimal solution through one of the different approaches to handle BMIs. For
instance, in the following we propose a simple algorithm using the alternating mini-
mization approach, where the decision variable tuples {K,L} and {P} are solved in
alternating steps, with the other tuple fixed during each step.

Algorithm 1 Integrated OOG-based design of observer and feedback gain matrices.
Input: The data matrices describing (5): the system matrices Ap,Bp,Cm,Cp,Dp, and
the adversary matrices Γu,Γy,Ep.
Auxiliary variables: Ak, Bk, Cc,k, Dc,k
Output: K∗,L∗,β ∗,P∗

1: Set k = 0, P−1 = ∞, P0 = 0.
2: Find stabilizing K0 and L0.
3: while ||Pk−Pk−1|| ≥ ε do
4: Ak = A(Kk,Lk), Bk = B(Kk,Lk), Cc,k =Cc(Kk,Lk), and Dc,k = Dc(Kk,Lk).

5:
(Pk+1,?) = argmin

P�0,β>0
β

s.t.

A>k P+PAk PBk C>c,k
B>k P 0 D>c,k
Cc,k Dc,k β I

−β

C>r
D>r
0

[Cr Dr 0
]
� 0.

6:
(Kk+1,Lk+1,βk+1) = argmin

K,L,β>0
β

s.t.

A>Pk+1 +Pk+1A Pk+1B C>c
B>Pk+1 0 D>c

Cc Dc β I

−β

C>r
D>r
0

[Cr Dr 0
]
� 0.

{The matrices A, B, Cc, and Dc depend on K and L, as detailed in (6).}
7: k = k+1.
8: end while
9: return (K∗,L∗,β ∗,P∗) = (Kk,Lk,βk,Pk).

Next we discuss an example where Algorithm 1 is used to re-design the closed-
loop system.

Example 7. Consider a scenario where the quadruple tank system is subject to a
physical attack directly on the first tank (i.e., the first entry of the state vector xp(t)).
This attack scenario can be modeled as (5) with Γu = Γy = /0 and Ep = e1, which
leads to a single-input system with na = 1. Therefore, the results from Section 4.1.2
hold, and the heuristic µ(w) provides a lower bound to the OOG, ‖Σ‖yc←yr .

For illustration purposes, the singular values σ c(w) and σ r(w), and their ratio
µ(w), are depicted in Fig. 7. The OOG of the system, computed through (18), is
‖Σ‖yc←yr = 36.4. This value is in accordance with the peak of µ(w), that is, the
OGG and µ = sup µ(w) coincide, which indicates that the lower bound results from
Section 4.1.2 are tight in this case.
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Fig. 7 Original closed-loop system. The singular values σ c(w) and σ r(w) (left) and their ratio
µ(w) (right) for a physical attack on water tank 1.

Next, we leverage Algorithm 1 to design an improved observer-based controller
and detector. Applying the algorithm to the closed-loop system under attack yields
the following gain matrices

K =


−0.2945 0.3364
−0.4852 −1.1088
0.0586 0.1256
0.0218 −0.2697

 , L =

[
−0.5130 0.0280 0.1759 −0.5569
0.0183 −0.3563 −0.8769 0.1434

]
.

The resulting singular values σ c(w) and σ r(w), and their ratio µ(w), are shown
in Fig. 8. As before, the OOG of the system computed through (18) and sup µ(w)
coincide and are equal to ‖Σ‖yc←yr = 31.6.

Several remarks are in order. First, note that the shape of the ratio µ(w) flipped
after the design, indicating that the worst-case inputs moved from low frequencies
(before the re-design) to the high frequencies (after the re-design).

Second, we observe that the performance singular value σ c(w) became larger at
the low frequencies after the re-design. Such an increase mean that the H∞ norm of
the system has increased after re-design, which may initially be counter-intuitive.

A third observation points to the possible usefulness of increasing the system’s
H∞ norm: it has allowed the detectability singular value to increase substantially at
low frequencies. This in turn implies that low frequency attacks became much more
detectable (by a factor of 10). Therefore, although the impact has slightly increased
at low frequencies, the detectability has greatly increased as well. This effect is
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Fig. 8 Closed-loop system re-designed through Algorithm 1. The singular values σ c(w) and σ r(w)
(left) and their ratio µ(w) (right) for a physical attack on water tank 1.

clearly visible by comparing the low frequency asymptotes of µ(w) before and after
the re-design.

It is noteworthy to highlight that such trade-offs between impact and detectabil-
ity, naturally imbued in the design procedure, are currently unavailable through ex-
isting techniques in robust control and fault detection. In particular, existing H−-
based approaches would unlikely change low frequency detectability, since the
worst-case detection in the H− index sense occurs at very large frequencies.

5 Conclusions

In this chapter, we have considered the security of control systems, in scenarios
where malicious adversaries aim at maximizing the impact on control performance,
while simultaneously remaining undetected. The objectives of the chapter were to
investigate possible metrics to analyze, and re-design, the closed-loop system from
a security perspective.

Classical metrics from robust control and fault detection were revisited under the
context of malicious attacks. The conclusion was that these metrics consider sepa-
rately impact of attacks and detection, and are thus inadequate for security analysis.
A initial attempt to merge these metrics was taken, by formulating a new metric
consisting of the ratio between performance and detection singular values. Unfortu-
nately, such an approach kept the limitations of classical metrics, and did not fully
capture some of the known potentially dangerous attacks, that have arbitrarily large
impact and low detectability.
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A recently proposed security metric, the output-to-output gain (OOG), was then
introduced and characterized. Borrowing results from dissipative systems theory for
linear systems with quadratic supply rates, the OOG was entirely characterized. This
in turn led to results enabling its efficient computation through convex optimization
problems. Necessary and sufficient conditions describing fundamental limitations
of the OOG were thus described.

Additionally, a first step was taken to use the OOG as a basis for controller and
detector design. The OOG-based design problem was cast as a non-convex opti-
mization problem with BMI constraints. Using the heuristic of alternating mini-
mization to address the BMI constraints, an algorithm was proposed that results in
a sub-optimal closed-loop system minimizing the OOG.

The results and insights contained in the chapter were supported and illustrated
through several numerical examples on a common closed-loop system, which were
presented continuously throughout the chapter.
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