

Data Injection Attacks against Feedforward Controllers

André Teixeira

Assistant Professor Uppsala University, Sweden

andre.teixeira@angstrom.uu.se

www.andre-teixeira.eu

Cyber-Secure and Resilient Networked Control Systems

- Networked control systems are to a growing extent based on open communication and software technology
- Leads to increased vulnerability to cyber-threats with many potential points of attacks
- Cyber-attacks can have dramatic physical impact
- How to model adversaries and attacks?
- How to compute impact of attacks?
- How to measure vulnerability?
- How to design protection and detection mechanisms?

- Exciting field, plenty of • open questions
 - Tutorial session at ECC

- Exciting field, plenty of open questions
 - Tutorial session at ECC
- Undetectable attacks have been investigated
- Focus on attacks on sensors and/or actuators

- Exciting field, plenty of open questions
 - Tutorial session at ECC
- Undetectable attacks have been investigated
- Focus on attacks on sensors and/or actuators
- No results w.r.t. attacks on disturbance measurements

Data Injection Attacks against Feedforward Controllers

- Disturbance measurement is corrupted
- A physical disturbance d may be present, but is unknown
- Main questions:
 - What attacks are (un)detectable?
 - What is the **impact** of attacks on the plant measurements and internal states?

Full closed-loop model

$$\mathcal{P} : \begin{cases} x_p[k+1] = A_p x_p[k] + B_p u[k] + F_p d[k] + \eta[k] \\ y_p[k] = C_p x_p[k] + G_p d[k] + \xi[k] \\ u[k] = u_y[k] + u_d[k] \end{cases}$$

$$\mathcal{F}_d : \begin{cases} x_d[k+1] = A_d x_d[k] + B_d \tilde{d}[k] \\ u_d[k] = C_d x_d[k] + D_d \tilde{d}[k] \\ u_d[k] = C_d x_c[k] + B_c y_p[k] \\ u_y[k] = C_c x_c[k] + D_c y_p[k] \end{cases}$$

$$\mathcal{C} : \begin{cases} x_r[k+1] = A_r x_r[k] + B_r u[k] + K_r y_p[k] + F_r \tilde{d}[k] \\ y_r[k] = C_r x_r[k] + D_r u[k] + E_r y_p[k] + G_r \tilde{d}[k] \end{cases}$$

$$\mathcal{Y}_I$$

Data Injection Attacks against Feedforward Controllers

André Teixeira, ECC 2019

Open-loop model

Analysis based on the open-loop model (plant + FF controller)

$$\mathcal{P}: \begin{cases} x_p[k+1] = A_p x_p[k] + B_p u[k] + F_p d[k] \\ y_p[k] = C_p x_p[k] + G_p d[k] \\ u[k] = u_y[k] + u_d[k] \\ \end{bmatrix} \\ \mathcal{F}_d: \begin{cases} x_d[k+1] = A_d x_d[k] + B_d \tilde{d}[k] \\ u_d[k] = C_d x_d[k] + D_d \tilde{d}[k] \end{cases}$$

$$\begin{aligned} x_{pd}[k+1] &= A_{pd}x_{pd}[k] + B_{pd}\tilde{d}[k] + F_{pd}d[k] \\ y_p[k] &= C_{pd}x_{pd}[k] + G_{pd}d[k], \\ x_{pd}[k] &\triangleq \left[x_p^{\top}[k] \; x_d^{\top}[k]\right]^{\top} \\ \tilde{d}[k] &= d[k] + a[k] \end{aligned}$$

- Gives results that hold for any LTI controller & anomaly detector
- It is straightforward to include the controller (by augmenting the plant)

Undetectable attacks

• Definition of undetectable attacks:

A data injection attack on the disturbance measurement, a[k], occurring at k = 0 is said to be 0-stealthy with respect to an *arbitrary anomaly detector*, with inputs u[k], $y_p[k]$, and $\tilde{d}[k]$, if there exists a disturbance d[k] and initial conditions $x_p[0]$ and $x_d[0]$ such that $y_p[k] = 0$ and $\tilde{d}[k] = 0$ for all k.

[Pasqualetti et al, TAC, 2013], [Sandberg and Teixeira, SoSCYPS, 2016]

- Intuitively: the attack mimics an "virtual" disturbance + a transient
- Can be posed as a output-zeroing problem / zero-dynamics:

$$x_{pd}[k+1] = A_{pd}x_{pd}[k] + \begin{bmatrix} B_{pd} + F_{pd} & B_{pd} \end{bmatrix} \begin{bmatrix} a^{\alpha} \begin{bmatrix} a \\ a \end{bmatrix} \begin{bmatrix} a^{\alpha} \begin{bmatrix} a \\ a \end{bmatrix} \begin{bmatrix} a^{\alpha} \begin{bmatrix} a \\ a \end{bmatrix} \begin{bmatrix} a \\ a \end{bmatrix} \begin{bmatrix} a \\ a \end{bmatrix} \begin{bmatrix} a^{\alpha} \begin{bmatrix} a \\ a \end{bmatrix} \begin{bmatrix} a^{\alpha} \begin{bmatrix} a \\ a \end{bmatrix} \begin{bmatrix} a \\ a \end{bmatrix} \begin{bmatrix} a^{\alpha} \end{bmatrix} \begin{bmatrix} a^{\alpha} \begin{bmatrix} a \\ a \end{bmatrix} \begin{bmatrix} a^{\alpha} \end{bmatrix} \begin{bmatrix} a^{\alpha} \begin{bmatrix} a \\ a \end{bmatrix} \begin{bmatrix} a^{\alpha} \end{bmatrix} \begin{bmatrix} a^{\alpha} \begin{bmatrix} a \\ a \end{bmatrix} \begin{bmatrix} a^{\alpha} \end{bmatrix} \begin{bmatrix} a^{\alpha} \end{bmatrix} \begin{bmatrix} a^{\alpha} \begin{bmatrix} a \\ a \end{bmatrix} \begin{bmatrix} a^{\alpha} \end{bmatrix} \end{bmatrix}$$

$$\begin{bmatrix} 0\\0 \end{bmatrix} = \begin{bmatrix} y_p[k]\\\tilde{d}[k] \end{bmatrix} = \begin{bmatrix} C_{pd}\\0 \end{bmatrix} x_{pd}[k] + \begin{bmatrix} G_p & 0\\I & I \end{bmatrix} \begin{bmatrix} d^a[k]\\a[k] \end{bmatrix}$$

Data Injection Attacks against Feedforward Controllers

André Teixeira, ECC 2019

Feedforward controller - disturbance rejection

- Performance output: $z[k] \triangleq C_z x_p[k] + G_z d[k]$
- Definition of perfect disturbance rejection:

The controller achieves perfect (asymptotic) disturbance rejection with respect to the performance output z[k] if $z[k] = 0 \forall k \ (\lim_{k \to \infty} z[k] = 0)$.

 Naturally leads to a characterization based on output-zeroing / zerodynamics

 $x_{pd}[k+1] = A_{pd}x_{pd}[k] + (B_{pd} + F_{pd})d[k]$ $0 = z[k] = C_{zd}x_{pd}[k] + G_{zd}d[k],$

Conclusions so far...

Data Injection Attacks against Feedforward Controllers André Teixeira, ECC 2019

Conclusions so far...

- Detectability relates to zero-dynamics from attack & disturbance to plant's measurement output
- Disturbance rejection relates to zero-dynamics from disturbance to performance output

Conclusions so far...

- Detectability relates to zero-dynamics from attack & disturbance to plant's measurement output
- Disturbance rejection relates to zero-dynamics from disturbance to performance output
- Zero-dynamics connects detectability with disturbance rejection
- · Zero-dynamics can be used to analyze attacks in terms of
 - detectability
 - impact on performance output / measurements (and states)

(Un)Detectability results

- Thm. 1: (known model of plant and feedforward controller)
 - a 0-stealthy attack is an invariant zero of $(A_{pd}, F_{pd}, C_{pd}, G_{pd})$

$$x_{pd}[k+1] = A_{pd}x_{pd}[k] + \begin{bmatrix} B_{pd} + F_{pd} & B_{pd} \end{bmatrix} \begin{bmatrix} d^a[k] \\ a[k] \end{bmatrix}$$

$$\begin{bmatrix} 0\\0 \end{bmatrix} = \begin{bmatrix} y_p[k]\\\tilde{d}[k] \end{bmatrix} = \begin{bmatrix} C_{pd}\\0 \end{bmatrix} x_{pd}[k] + \begin{bmatrix} G_p & 0\\I & I \end{bmatrix} \begin{bmatrix} d^a[k]\\a[k] \end{bmatrix}$$

- Thm. 2: (known model of plant only)
 - A 0-stealthy attack is an invariant zero of (A_p, F_p, C_p, G_p)
 - a[k] mimics a *virtual* disturbance that results in a zero output signal (i.e., naturally rejected by the open-loop system)
- Results hold for arbitrary LTI controllers & anomaly detector

UPPSALA UNIVERSITET

Impact analysis - the role of the feedforward controller

Data Injection Attacks against Feedforward Controllers André Teixeira, ECC 2019

• Suppose that no physical disturbance is present (d[k] = 0)

- Suppose that no physical disturbance is present (d[k] = 0)
- FF controller has perfect disturbance rejection w.r.t. $z = y_p$
 - Cor. 2: suppose that a[k] is a **non-vanishing 0-stealthy** attack. Then a[k] mimics a *virtual* disturbance that is perfectly rejected w.r.t. $z = y_p$, and the attack results in a **vanishing** measurement signal.

- Suppose that no physical disturbance is present (d[k] = 0)
- FF controller has perfect disturbance rejection w.r.t. $z = y_p$
 - Cor. 2: suppose that a[k] is a **non-vanishing 0-stealthy** attack. Then a[k] mimics a *virtual* disturbance that is perfectly rejected w.r.t. $z = y_p$, and the attack results in a **vanishing** measurement signal.
- FF controller has perfect disturbance rejection w.r.t. ' $z \neq y_p$ '
 - Cor. 1: suppose that a[k] is a non-vanishing 0-stealthy attack. Then
 a[k] mimics a virtual disturbance that results in a non-vanishing
 measurement signal.

- Suppose that no physical disturbance is present (d[k] = 0)
- FF controller has perfect disturbance rejection w.r.t. $z = y_p$
 - Cor. 2: suppose that a[k] is a **non-vanishing 0-stealthy** attack. Then a[k] mimics a *virtual* disturbance that is perfectly rejected w.r.t. $z = y_p$, and the attack results in a **vanishing** measurement signal.
- FF controller has perfect disturbance rejection w.r.t. ' $z \neq y_p$ '
 - Cor. 1: suppose that a[k] is a non-vanishing 0-stealthy attack. Then
 a[k] mimics a virtual disturbance that results in a non-vanishing
 measurement signal.
- In both cases, state estimates will be non-vanishing.
- These results capture the impact on the measurement and state estimates

Numerical Examples

- Unstable plant (2 states, one sensor/actuator) + square-wave disturbance
 - Measurement: $Y_p(z) = G_{yu}(z)U(z) + G_{yd}(z)D(z)$
 - Performance output: $Z(z) = G_{zu}(z)U(z) + G_{zd}(z)D(z)$
- Feedback controller + constant reference
- Anomaly detector with robust threshold
- FF controller: $F_d(z) = G_{zu}^{-1}(z) G_{zd}(z)$
 - Case 1: $z = y_p$, detectable attack
 - Case 2: $z = y_p$, undetectable attack
 - Case 3: ' $z \neq y_p$ ', undetectable attack

Detectable attack

- Attack begins at 50s •
- Constant attack • a[k] = 0.5
- Attack detected due • to sharp spike

Undetectable attack with $z = y_p$.

- Attack exploiting an unstable zero of (A_p, F_p, C_p, G_p) $a[k] = \lambda^{k-k_a} x_a$ $x_a = -0.01, \ \lambda = 1.0141$
- Attack is not detected
- Vanishing effect on measurement
- Non-vanishing state estimation error

- FF controller is not reacting to the "virtual" disturbance on z
 - it is naturally rejected

André Teixeira, ECC 2019

Undetectable attack with $z \neq y_p$.

- Attack exploiting an unstable zero of (A_p, F_p, C_p, G_p) $a[k] = \lambda^{k-k_a} x_a$ $x_a = -0.01, \ \lambda = 1.0141$
- Attack is not detected
- Non-vanishing effect on measurement and states

the "virtual" disturbance on z

Summary and Future Work

- Summary
 - Data injection attacks on disturbance measurements are investigated through analysis of zero-dynamics
 - Undetectable attacks must mimic a virtual disturbance that follows the zero dynamics
 - Impact on plant measurement depends on feedforward controller
 - Estimates of internal states are significantly affected
- Future work
 - Incorporate known disturbance models
 - Investigate the behaviour under specific disturbance rejection strategies
 - Use watermarking strategies to detect attacks

Thank you!

www.andre-teixeira.eu

Data Injection Attacks against Feedforward Controllers André Teixeira, ECC 2019