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Abstract—In this paper, we address the problem of covert

communication under the presence of multiple wardens with

a finite blocklength. The system consists of Alice, who aims

to covertly transmit to Bob with the help of a jammer. The

system also consists of a Fusion Center (FC), which combines

all the wardens’ information and decides on the presence or

absence of Alice. Both Alice and jammer vary their signal power

randomly to confuse the FC. In contrast, the FC randomly

changes its threshold to confuse Alice. The main focus of the

paper is to study the impact of employing multiple wardens on

the trade-off between the probability of error at the FC and the

outage probability at Bob. Hence, we formulate the probability

of error and the outage probability under the assumption that

the channels from Alice and jammer to Bob are subject to

Rayleigh fading, while we assume that the channels from Alice

and jammer to the wardens are not subject to fading. Then,

we utilize a two-player zero-sum game approach to model the

interaction between joint Alice and jammer as one player and

the FC as the second player. We derive the pay-off function that

can be efficiently computed using linear programming to find the

optimal distributions of transmitting and jamming powers as well

as thresholds used by the FC. The benefit of using a cooperative

jammer is shown by means of analytical results and numerical

simulations to neutralize the advantage of using multiple wardens

at the FC.

I. INTRODUCTION

Background & Motivations: To prevent eavesdroppers
(i.e., wardens) from accessing the content of the packets,
wireless communication protocols highly rely on encryption
algorithms. However, their vulnerabilities have been revealed
by manipulating non-computational techniques such as side-
channel attacks [1]. Moreover, in some applications of wire-
less networks (e.g., military applications), the detection of
transmission enables the adversary to discover the location
of the transmitter for further attacks. Motivated by this, the
idea of covert communication (also known as Low Probability
Detection (LPD)) has been introduced to provide a higher
tier of security via hiding wireless transmissions in noise so
that: (1) the outage probability at the legitimate receiver is
acceptably low; (2) the probability of error at an eavesdropper
in detecting the transmission is arbitrary close to a random
guess. The probability of error at the eavesdropper is defined
as PFA +PMD where PFA is the probability that the warden
raises the alarm while the transmitter (Alice) is not transmit-
ting (i.e., false alarm), and PMD is the probability that the
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eavesdropper (warden) does not detect Alice’s transmission
(i.e., missed detection). Hence, covertness is defined as below:

PFA + PMD � 1� ✏, 8✏ > 0.

The Direct Sequence Spread Spectrum (DSSS) [2] approach
is probably the best practical example of covert communica-
tion. DSSS spreads the transmission bandwidth by modulating
the information on pseudo-noise waves and suppressing the av-
erage Power Spectral Density (PSD) of the transmitted signal
below the noise level, thus making it difficult to distinguish the
transmitted signal from the noise. However, the performance
of DSSS systems with additive white Gaussian noise (AWGN)
between all parties is limited by the square root law [1]. That
is, Alice can covertly transmit O(

p
N) bits in N channel uses

to the receiver (Bob), where N ! 1, which results in zero
information-theoretic capacity as limN!1 O(

p
N)/N [1]. In

other words, to remain covert, Alice has to adjust her per-
symbol transmit power to O(1/

p
N), which goes to 0 as

N ! 1.
The square root law is the case under the assumption that

the warden knows the exact statistical characteristics of the
background noise. That is, the law can be broken and a positive
rate can be achieved (i.e., O(N) bits in N channel uses can
be transmitted) when there is uncertainty in the Signal to
Interference plus Noise Ratio (SINR) at the warden’s receiver
[3]. Inspired by this, many research efforts have demonstrated
the significant advantages of employing a jammer [4]–[6]. A
jammer is a node that produces artificial noise by randomly
varying its transmit power (or using a constant but randomized
power by the fading channel) to increase uncertainty at the
warden’s SINR. The jammer may also cooperate with Alice
and transmit the jamming signal when Alice is silent, and keep
silent when Alice transmits [7].

.  .  .
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Figure 1: Illustration of the system model - with the help of jammer,
Alice transmits covertly to Bob in the presence of multiple wardens.



Besides the asymptotic results given under infinite block
length, the case with finite blocklength has been considered.
In [8] Alice is suggested to vary its transmit power following
a uniform distribution to confuse warden (i.e., increase uncer-
tainty at warden). Leong et al. [9] considers the situation where
the warden (in response to Alice’s randomized power strategy),
can randomly change its threshold. Following this situation,
the interaction between Alice and the warden is formulated
using a game-theoretic approach. Then, a utility function is
introduced to make a trade-off between the achievable rate
and the probability of error. Finally, the optimal distribution of
Alice and jammer’s power, as well as the warden’s threshold,
is computed using linear programming. This paper also shows
that at a given achievable rate, utilizing a friendly jammer can
significantly increase PFA + PMD.

Novelty & Contributions: Instead of the achievable rate,
the current paper considers the trade-off between the outage
probability at Bob (under a desired achievable rate) and the
probability of error at FC. The paper also generalizes the
game-theoretic approach in [9] to a scenario with multiple
wardens, where the channel between Alice and Bob, as well
as the channel between jammer and Bob, are subject to block
Rayleigh fading. This is the worst-case scenario for Alice as
the channel between Alice and wardens as well as the channel
between jammer and wardens is AWGN and not subject to
fading. The main contribution of the paper is as follows:
• We investigate the presence of multiple wardens, where

they share their observations (i.e., their measurements)
with a FC. The expressions for PFA and PMD are derived
for (a) wardens with identical noise variance; (b) wardens
with different noise variance.

• A zero-sum game formulation is provided where Alice op-
timizes a utility function achieving a trade-off between the
outage probability and the probability of error at the FC,
and the FC optimizes the negative of this utility. Optimal
distributions of the joint Alice and jammer transmission
powers and the thresholds at the FC are obtained via linear
programming.

• We present some analytical results in the case of no
jammer and an arbitrary number of wardens, showing that
the optimal strategy at the FC is to use a unique threshold,
whereas Alice randomizes her transmission power between
at most two levels. We also show that in the presence of a
jammer, increasing the number of wardens has a negligible
benefit for the FC when the number of transmission blocks
(channel uses) is sufficiently large.

• Extensive numerical results illustrate the benefit of hav-
ing a coordinated jammer and Alice optimally choosing
the joint distribution of their transmission powers in the
presence of multiple wardens.

Section II details the system model and derives the general
expressions for the probability of error as well as the outage
probability. Section III gives the game-theoretic formulation of
utility function. Section IV considers a special case scenario
with identical noise variance at wardens. Section V derives the
analytical results and Section VI presents numerical results via

simulation. Finally, Section VII draws concluding remarks.

II. SYSTEM MODEL AND METRICS

A. Channel Model

Fig. 1 illustrates the system model, where Alice aims to
covertly send a finite block of N complex-valued symbols to
Bob. N can also be seen as the number of channel uses. To
increase uncertainty at the wardens’ noise level, the jammer,
in cooperation with Alice, generates noise. We assume the
channel from Alice to Bob and the channel from the jammer to
Bob are (pessimistically, from Alice’s perspective) subject to
Rayleigh block fading, where the channels vary independently
between blocks but remains unchanged within a block of N
channel uses. Hence, denoting the absence and presence of
Alice’s transmission by H0 and H1, respectively, the received
signal at Bob (yb,k) is expressed as:

H0 : yb,k = nb,k + hjbjk

H1 : yb,k = habxk + nb,k + hjbjk
(1)

where nb,k ⇠ CN(0,�2
b
) is a zero-mean complex Gaussian

noise at Bob. xk ⇠ CN(0, P (A)) and jk ⇠ CN(0, P (J))
denote the complex Gaussian signal to be transmitted by Alice
and jammer, with power P (A) and P (J), respectively. hab

and hjb are Rayleigh fading coefficients with E[|hab|2] =
E[|hjb|2] = 1, and k = 1, . . . , N . The channels from Alice
and jammer to wardens are AWGN, and not subject to fading.

This paper assumes wardens employ a typical energy de-
tector where they passively measure the energy over the
channel from Alice and share their measurements with the
FC. To detect the presence of Alice’s transmission, the FC
aggregates the received channel measurements (also known as
a soft combination of decisions) and decides between the two
hypotheses, given that the received signal at the warden w is

H0 : yw,k = nw,k + jk

H1 : yw,k = xk + nw,k + jk
(2)

where nw,k ⇠ CN(0,�2
w
) is complex Gaussian noise at

warden w and w = 1, . . . ,W . yw,k ⇠ CN(0, P (A) + �2
w
)

and yw,k ⇠ CN(0, P (A) + P (J) + �2
w
) is the received signal

by warden w over the kth channel in use under H0 and H1,
respectively.

B. Detection of Covert Communication

To transmit each block of symbols, Alice randomly se-
lects a power level P (A) from a finite set of powers (i.e.,
P (A) 2 {P (A)

1 , . . . , P (A)
I

}). Likewise, jammer randomly takes
jamming power P (J) on {P (J)

1 , . . . , P (J)
J

}. The joint proba-
bility of transmitting and jamming power is defined as:

⇡A,J

i,j
= P(P (A) = P (A)

i
^ P (J) = P (J)

j
).

Please note that the exact transmit and jamming power in
each block is only known by Bob via a pre-shared codebook,
but that FC only knows the joint distribution of P (A) and P (J).
Once the FC receives all measurements from wardens, the test



statistic T is produced by taking the weighted average of the
measured channel samples:

T =
WX

w=1

!wTw =
1

N

WX

w=1

NX

k=1

!w|yw,k|2 (3)

where !w is the weighting factor proportional to the SINR at
warden w:

!w =
SINRwP
W

i=1 SINRi

(4)

FC’s optimal test to minimize the probability of error
is the likelihood ratio test (LRT) [8]. Hence, assuming the
probability that Alice transmits or not is equally likely (i.e.,
P(H0) = P(H1) = 1/2) the LRT is:

T
H0

7
H1

t (5)

where t is the threshold at FC which is randomly selected
from a finite set {t1, . . . , tM} with:

⇡t

m
= P(t = tm), m 2 {1, . . . ,M}

Note that !wTw given in Eq. 3 is a chi-squared distributed
random variable with scaling factor !w(�2

w
+P (J))/2N under

H0 and scaling factor !w(�2
w
+P (J) +P (A))/2N under H1.

!wTw =

8
><

>:

H0 : !w(�2
w+P

(J))
2N

P
N

k=1

��
yw,k

��2
�2
w+P (J)

H1 : !w(�2
w+P

(J)+P
(A))

2N

P
N

k=1

��
yw,k

��2
�2
w+P (J)+P (A)

(6)
Thus, T is the sum of W independent scaled chi-squared

distributed random variables with different parameters, and its
likelihood function under H0 is [10]:

f(T |H0) =
IX

i=1

JX

j=1

1X

k=0

cj�j,k
T ⇢+k�1 exp(� T

✓
?
j
)

�(⇢+ k)✓?
⇢+k

j

⇡A,J

i,j
(7)

where ⇢ = WN , ✓j,w = !w(�2
w
+P (J)

j
)/N , ✓?

j
= minw ✓j,w,

cj =
Q

W

w=1

⇣
✓?
j
/✓j,w

⌘N

and �j,k is found by recursion from:

�j,k+1 =
1

k + 1

k+1X

l=1

l⇣j,l�j,k+1�l, k = 0, 1, 2, . . . , �j,0 = 1

and ⇣j,k =
P

W

w=1 N
�
1 � ✓?

j
/✓j,w

�k
/k, k = 1, 2, 3, . . . . In

the same way, the likelihood function of T under H1 can be
expressed as:

f(T |H1) =
IX

i=1

JX

j=1

1X

k=0

Ci,j�i,j,k

T ⇢+k�1 exp(� T

⇥?
i,j
)

�(⇢+ k)⇥?⇢+k

i,j

⇡A,J

i,j

(8)
where ⇥w,i,j = !w(P (A)+P

(J)+�
2
w)

N
, ⇥?

i,j
= minw ✓w,i,j ,

Ci,j =
Q

W

w=1

⇣
⇥?

i,j

⇥w,i,j

⌘N

, and �i,j,k is recursively calculated:

�i,j,k+1 =
1

k + 1

k+1X

l=1

lZi,j,l�i,j,k+1�l, k = 0, 1, 2, . . . ,

�i,j,0 = 1

and Zi,j,k =
P

W

w=1

N

�
1�

⇥?
i,j

⇥i,j,w

�k

k
, k = 1, 2, 3, . . . .

The detection performance of FC is subject to two types
of error probabilities: (I) PFA denoting the probability of
rejecting H0 when it is true (i.e., PFA = P(decideH1|H0));
and (II) PMD denoting the probability of rejecting H1 when
it is true (i.e., PMD = P(decideH0|H1)). Thus, for a given
distribution of detection thresholds (⇡t) and joint transmit and
jamming power (⇡A,J ), PFA and PMD are defined as follows:

PFA(⇡
A,J ,⇡t) = P(T > t|⇡A,J ,⇡t, H0) =

IX

i=1

JX

j=1

MX

m=1

1X

k=0

cj�j,k
�
�
⇢+ k, tm

✓
?
j

�

�(⇢+ k)
⇡A,J

i,j
⇡t

m

(9)

PMD(⇡A,J ,⇡t) = P(T < t|⇡A,J ,⇡t, H1) =

1�
MX

m=1

IX

i=1

JX

j=1

1X

k=0

Ci,j�i,j,k

�
�
⇢+ k, tm

⇥?
i,j

�

�(⇢+ k)
⇡A,J

i,j
⇡t

m

(10)

where �(.) and �(., .) are complete and upper incomplete
gamma function.

C. Outage Probability

To support a target achievable rate (RT ), the threshold
SINR at Bob (⌧ ) is required to satisfy the given equality [9]:

RT ⇡ log2(1 + ⌧)�

s
1

N

1

(1 + ⌧)2
Q�1(�)

ln(2)

where Q�1(.) is the inverse Q-function, and � is the cod-
ing probability of error. The outage probability under the
constraint of satisfying a target achievable rate RT is the
probability that the SINR at Bob falls below ⌧ . Following
the fact that (a) both Alice and jammer randomize on a set of
transmit powers; and (b) the channel from Alice to Bob, as
well as the channel from jammer to Bob, is subject to Rayleigh
fading, the outage probability is as given below:

Pout(⇡
A,J , ⌧) =P

✓
|hab|2P (A)

�2
b
+ |hjb|2P (J)

< ⌧

◆
=

1�
IX

i=1

JX

j=1

e
� ⌧�2

b

P
(A)
i

1 +
⌧P

(J)
j

P
(A)
i

⇡A,J

i,j

(11)

III. GAME-THEORETIC FORMULATION

Following the proposed approach in [9], this section for-
mulates the interaction between Alice, jammer, and the FC
as a two-player zero-sum game. Alice and jammer, on one
side, cooperatively randomize on a finite set of power levels
aiming to confuse the FC, and accordingly, increase the
probability of error. In parallel, Alice wishes to minimize the
Pout (equivalently maximize 1� Pout ) satisfying a minimum
required achievable rate. We can conclude this into Alice’s
utility function as below:

U = 1� Pout(⇡
A,J , ⌧)+

�

✓
PFA(⇡

A,J ,⇡t) + PMD(⇡A,J ,⇡t)

◆
(12)



where � signifies the trade-off between outage probability and
the probability of error. In other words, � allows Alice to trade
the probability of error for a desirable outage probability.

On the other side, the FC confuses Alice by randomizing
between a finite set of thresholds aiming to minimize the prob-
ability of error (i.e., maximize the negative of the probability
of error). It is also reasonable that the FC prefers a higher Pout

at Bob. Motivated by this, a utility function for FC can be the
negative of the utility function in Eq. (12). That is, the gain
of the FC is equivalent to Alice’s loss. Thus, the competitive
conflict between Alice and FC can be formulated as a two-
player zero-sum game. The Nash equilibrium mixed strategy
for Alice can be found by solving the linear program:

max
{⇡A,J

i,j }
U

s.t.
IX

i=1

JX

j=1

"
e
� ⌧�2

b

P
(A)
i

1 +
⌧P

(J)
j

P
(A)
i

+ �

✓ 1X

k=0

cj�j,k
�
�
⇢+ k, tm

✓
?
j

�

�(⇢+ k)

+ 1�
1X

k=0

Ci,j�i,j,k

�
�
⇢+ k, tm

⇥?
i,j

�

�(⇢+ k)

◆#
⇡A,J

i,j
> U

m = 1, . . . ,M,
IX

i=1

JX

j=1

⇡A,J

i,j
= 1, ⇡A,J

i,j
� 0.

(13)

Likewise, a Nash equilibrium mixed strategy for FC can be
found by solving the linear program:
min
{⇡t

m}
U

s.t.
MX

m=1

"
e
� ⌧�2

b

P
(A)
i

1 +
⌧P

(J)
j

P
(A)
i

+ �

✓ 1X

k=0

cj�j,k
�
�
⇢+ k, tm

✓
?
j

�

�(⇢+ k)

+ 1�
1X

k=0

Ci,j�i,j,k

�
�
⇢+ k, tm

⇥?
i,j

�

�(⇢+ k)

◆#
⇡t

m
< U

i = 1, . . . , I, j = 1, . . . , J,
MX

m=1

⇡t

m
= 1, ⇡t

m
� 0

(14)

Please note that although the linear program in (13) does
not follow the standard form of linear programs, it can be put
into the standard form by vectorization of the joint probability
distribution matrix ⇡A,J

i,j
.

IV. A SPECIAL CASE SCENARIO WITH IDENTICAL NOISE
VARIANCE AT WARDENS

Consider the case where all wardens experience the same
noise variance:

�2
w
= �2

w0 , 8w,w0 2 {1, 2, . . . ,W}.
Thus:

!w =
1

W
, w = 1, . . . ,W.

Replacing !w by 1/W in Eq. (3), the average measured
energy at the FC can be written as follows:

T =
1

W

WX

w=1

Tw =
1

WN

NX

k=1

|yw,k|2. (15)

The test statistic T is a scaled chi-squared distributed
random variable with scaling factor (�2

w
+P (J))/2WN under

H0 and scaling factor (�2
w
+ P (J) + P (A))/2WN under H1.

Therefore, the likelihood function of T under H0 and H1 is
defined respectively:

f(T |H0) =
TWN�1

�(WN)

IX

i=1

JX

j=1

"✓
WN

P (J)
j

+ �2
w

◆WN

⇥ exp

✓
� WNT

P (J)
j

+ �2
w

◆#
⇡A,J

i,j

(16)

f(T |H1) =
TWN�1

�(WN)

IX

i=1

JX

j=1

"✓
WN

�2
w
+ P (J)

j
+ P (A)

i

◆WN

⇥ exp

✓
� WNT

�2
w
+ P (J)

j
+ P (A)

i

◆#
⇡A,J

i,j
.

(17)

For a given distribution of detection thresholds (⇡t) and joint
transmit and jamming power levels (⇡A,J ), PFA and PMD are
defined as follows:

PFA(⇡
A,J ,⇡t) =

MX

m=1

IX

i=1

JX

j=1

�(WN, WNtm

�2
w+P

(J)
j

)

�(WN)
⇡A,J

i,j
⇡t

m

(18)

PMD(⇡A,J ,⇡t) =
IX

i=1

JX

j=1

MX

m=1


1�

�(WN, WNtm

�2
w+P

(J)
j +P

(A)
i

)

�(WN)

�
⇡A,J

i,j
⇡t

m
.

(19)

V. ANALYTICAL RESULTS

Theorem 1. With an arbitrary number of W wardens but
without the presence of the jammer (i.e., P (J) = 0), the Nash
equilibrium strategy at the FC includes only one threshold
with probability one while, Alice’s Nash equilibrium strategy
involves randomizing between at most two transmit powers.

Proof. Consider the utility function in Eq. (12). To find the
support set of optimal thresholds of the FC for a given
Alice’s transmit power distribution, we can calculate the first
derivative of the utility function w.r.t the threshold t and set
it equal to zero as:

@U

@t
=

IX

i=1

MX

m=1

h
exp

⇣
� WNtm

�2
w
+ P (A)

i

⌘⇣ WNtm

�2
w
+ P (A)

i

⌘WN

� exp
⇣
� WNtm

�2
w

⌘⇣WNtm
�2
w

⌘WNi
⇥ ⇡A

i
⇡t

m

tm�(WN)
= 0.

(20)

After simplifying Eq. (20), we can get the following equal-
ity, solving which gives the optimal thresholds (t?).

IX

i=1

⇣ �2
w

�2
w
+ P (A)

i

⌘WN

exp
⇣ WNt?P (A)

i

�2
w
(�2

w
+ P (A)

i
)

⌘
⇡A

i
= 1 (21)



At a given Alice’s transmit power distribution, each sum-
mand in Eq. (21) is a strictly increasing function of t, thus,
the whole sum in the left-hand side is a strictly increasing
function of t, which guarantees the uniqueness of the solution
(t?). One can also show that the second derivative at this point
is positive. Hence we can conclude that t? minimizes the utility
function. Thus, it is the optimal choice for the FC.

On the other hand, since there is only one optimal threshold
for FC, then from Caratheodory’s theorem [11] the Alice’s
Nash equilibrium has at most two transmit powers. In other
words, since the utility of each power level P (A)

i
at a given

t? is a one-dimensional real value and Alice’s utility U is a
convex combination of utilities of power levels (i.e., lies in
the convex hull of the utility of power levels), Alice’s utility
can be written as a convex combination of utilities achieved
by at most 2 power levels.

Remark. The range of the optimal threshold t?: Consider a
scenario without the presence of the jammer where multiple
wardens experience the same noise variance. Given that
PFA + PMD > 1 � ✏, it can be shown that the range of
t? is:1

t? 2 [�2
w
� �2

w

2WN

r
2

✏
,�2

w
+ P (A)

1 +
�2
w
+ P (A)

i

2WN

r
2

✏
].

Theorem 2. Let 1 � P(E) and 1 � P(E)0 be the probability
that PFA+PMD > 1� ✏ at a desirable 1�Pout in scenarios
with W and W 0 wardens, respectively, where W < W 0. Then,
by choosing N > Nµ, P(E) � P(E)0 < µ for any µ > 0, as
long as Nµ is sufficiently larger than

q
2
✏
.

Proof. For the sake of simplicity, we consider the multiple-
warden case scenario with identical noise variance. A similar
approach can be applied to the case with non-identical noise
variance. Assume a desirable 1 � Pout = � is required to be
satisfied. Therefore, following Eq. (11), P (J) turns out to be
a strictly increasing function of P (A) so that there is a unique
P (J)
i

> 0 corresponding to any P (A)
i

> � ⌧�
2
b

ln(�) that satisfies
the equation below:

P (J)
i

=
P (A)
i

⌧

✓
e
� ⌧�2

b

P
(A)
i

�
� 1

◆
. (22)

Since PFA = P(T > t|H0), the following can be derived
from Chebyshev’s inequality:

P
�
2WN � ✏0  �2

2WN  2WN + ✏0
�
� 1� 2

✏20
. (23)

Hence, for T under H0 (see Eq. (6)) it can be concluded
that:

P
�
�2
w
+P (J)

i
� 1(i)  T  �2

w
+P (J)

i
+ 1(i)

�
� 1�✏ (24)

where ✏ = 2
✏
2
0

and  1(i) =
�
2
w+P

(J)
i

2WN ✏0. That is, for any ti <

�2
w
+P (J)

i
� 1(i), PFA > 1�✏. Likewise, following analogous

arguments, for any ti > �2
w
+ P (J)

i
+ P (A)

i
+  2(i), PMD >

1The proof is omitted due to space constraints.

1 � ✏, where  2(i) =
�
2
w+P

(J)
i +P

(A)
i

2WN ✏0. Therefore, it can be
concluded that if either (I) ti > �2

w
+P (J)

i
+P (A)

i
+ 2(i) or

(II) ti < �2
w
+ P (J)

i
�  1(i) is correct, PFA + PMD > 1� ✏.

Let E be the event that neither of (I) or (II) happens. That is,
E : �2

w
+P (J)

i
� 1(i) < ti < �2

w
+P (J)

i
+P (A)

i
+ 2(i). Let

P(E) be the probability that event E happens. Hence, 1�P(E)
represents the probability PFA +PMD > 1� ✏. For any P (A)

i

and P (J)
i

that satisfies Eq. (22), FC can achieve P(E) = 1 by
adjusting its threshold to:

ti = �2
w
+P (J)

i
� 1(i)+�i = �2

w
+P (J)

i
+P (A)

i
+ 2(i)��i

(25)
where �i = (P (A)

i
+  1(i) +  2(i))/2. Alice and jammer

can avoid this by switching to a different pair of transmit and
jamming power (P (A)

i+1 , P
(J)
i+1) satisfying either (I) or (II) as

well as Eq. (22). To this end, it is enough to set P (J)
i+1 as:

P (J)
i+1 = P (J)

i
+ �i +  1(i+ 1)�  1(i) (26)

and accordingly set P (A)
i+1 based on Eq. (22). Similarly, the

FC can take the corresponding threshold ti+1. Assume there
are n pairs of (P (A)

i+1 , P
(J)
i+1) that satisfies Eq. 22. Since Alice,

jammer, and FC randomly select the transmission power levels
and thresholds, respectively, P(E) is calculated as follows:

P(E) =
nX

i=1

⇡A,J

i,i
⇥ ⇡t

i
. (27)

The FC knows Alice and Jammer’s distribution of power
levels, so it can maximize P(E) by taking ⇡t

k
= 1 where:

k = argmax
1in

(⇡A,J

i,i
). (28)

Thus, the best strategy for Alice and jammer is to use a
uniform distribution (⇡A,J

i,i
= 1/n) under which P(E) = 1/n.

Following Eq. (26), n can be obtained by solving the equality
below:

n�1X

i=1

�i +  1(i+ 1)�  1(i) = P (J)
J

� P (J)
1 . (29)

Let N� >> ✏0 =
q

2
✏

be the number of channel uses which
results  1(i+ 1)� 1(i) = �, where � is an arbitrarily small
number. By choosing N > N�, Eq. (29) can be written as
below:

0 < P (J)
J

� P (J)
1 � 1

2

n�1X

i=1

P (A)
i

< �, 8� > 0. (30)

As can be shown, n (and consequently P(E)) does not
depend on W and �2

w
, as one can make � arbitrarily small.

VI. NUMERICAL RESULTS

In this section, we perform extensive simulations in order to
verify the proposed analytical results. We further compare the
performance of the proposed approach with uniform distribu-
tion as well as a constant transmit power scheme. This section
considers the single-warden scenario first. It provides some
plots of the Nash equilibrium mixed strategy and examines
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Figure 2: Probability distribution of (a) Alice’s transmit power level
(b) thresholds at FC; in a single-warden scenario without the jammer.

the covert performance of the game-theoretic approach in a
trade-off with the outage probability. The rest of this section
discusses the impact of utilizing multiple wardens on the
mentioned trade-off.

In most of the simulations throughout this section, we
assume Alice’s transmit powers are quantized from 0.01 mW
to 3 mW in steps of 0.001 mW. Likewise, the jamming power
is discretized from 0 mW to 3 mW in steps of 0.001 mW.
The detection threshold at FC ranges from 0.01 mW to 6 mW
with a step size of 0.001 mW. The number of channel uses
(N ) is set to 200, and the noise variance at Bob (�2

b
) and

wardens (�2
w

) is 0 dBm. We also set the target achievable rate
to RT = 0.4 bits per channel uses and � = 0.1, turns out the
threshold SINR (i.e., ⌧ ) to be almost 0.407.

A. Single-warden case Scenario

For the sake of simplicity of analysis, we first consider
a scenario with a single warden without the presence of a
cooperative jammer. Let � = 1. Fig. 2a and Fig. 2b illustrates
the distribution (i.e., the Nash equilibrium) of Alice’s transmit
power and the thresholds at the FC, respectively. The results
show that Alice’s Nash equilibrium is to randomize between
the minimum and the maximum transmit power level, while
the Nash equilibrium strategy for FC is to randomize between
two adjacent thresholds close to �2

w
+ P (A)

1 . However, as
expected, repeating the simulation reveals that the two thresh-
olds of FC overlap when the granularity level of thresholds
is increased. We also repeated the simulation under different
values of � ranging from 0.1 to 4, which leads to three key
observations: (1) Increasing � (i.e., emphasising more on the
probability of error) motivates Alice to select her minimum
power level with a higher probability so that, for large �s
Alice’s mixed strategy is replaced by a pure strategy with
P(P (A) = P (A)

1 ) = 1; (2) Decreasing the value of � motivates
Alice to increase the probability of transmission with the
maximum power level. Accordingly, for small values of �s,
Alice’s mixed strategy is changed to a pure strategy with
P(P (A) = P (A)

I
) = 1; (3) At some �s close to 1, Alice

randomizes between her maximum transmit power and another
power level very close to her minimum transmit power.

We repeated the simulations under the presence of the
jammer. Fig. 3a illustrates the joint distribution of Alice and
jammer’s transmit power. Unlike the case without the jam-
mer, Alice and jammer jointly randomize on several transmit
powers in equilibrium. This is also the case for the FC. As is
shown in Fig 3b, the Nash equilibrium mixed strategy of FC
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Figure 3: (a) Joint probability distribution of Alice and jammer’s
transmit powers; (b) probability distribution of thresholds at FC;
under a single-warden case scenario and presence of jammer.

includes several thresholds. We also repeated the simulation
for different �s ranging from 0.1 to 4, based on which we
plotted the trade-off between 1�Pout and probability of error
in Fig. 4. As is expected, increasing � enables Alice to gain
a higher probability of error, though, at the cost of lower
1�Pout . We further plotted the simulation results for different
N ranging from 100 to 1000 channel uses. The key observation
is that regardless of the length of the blocks, the presence of
the jammer results in a significantly better performance for
Alice (i.e., a higher probability of error at a given 1� Pout ).
It can also be observed that at a desired 1�Pout in scenarios
without the presence of the jammer, utilizing larger N provides
a lower probability of error. This is reasonable due to the fact
that the larger blocks provide FC with more observations and
accordingly, less erroneous decisions [1]. This is the other
way around under the presence of the jammer. As is shown,
utilizing larger blocks results in a slightly better performance
for Alice which is consistent with the results of [5].

We further compare the proposed approach with a constant
power scheme and the scheme with uniformly distributed
transmit powers [8] in Fig. 4b. For constant power scheme,
Alice considers different transmit powers from 0.01mW to 3
mW, for each of which, the FC finds the optimal threshold that
minimizes the utility. Among them, Alice selects the power
level that maximizes the utility as its transmit power level. For
uniform distribution scheme, to find the best range of transmit
powers, Alice considers N � 1 different range of transmit
powers identified by {0.01, . . . , 0.01k} where k 2 {2, ..., N}.
Note that k 6= 1 otherwise it turns out to a constant power
scheme. Under each range of transmit powers, the optimal
threshold at the FC is calculated. Among them, Alice selects
the range with the maximum utility. As can be seen, unlike the
uniform distribution scheme which has the worst performance,
the constant power scheme is almost as good as the proposed
approach in the case of no jammer. This is expected as the
optimal distribution is also a pure strategy (i.e., a constant
transmit power) under many values of �. That is, choosing any
power with uniform probability is bound to be sub-optimal.

B. Multiple-wardens Case Scenario

Fig. 5 illustrates the trade-off between the outage probability
and the probability of error under the utilization of multiple
wardens. For the sake of simplicity of analysis, we first assume
wardens experience identical noise variance with �2

w
= 1 mW.

As is shown in Fig. 5a, increasing the number of wardens in
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Figure 4: (a) Impact of increasing N on the expected 1 � Pout vs.
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0 0.2 0.4 0.6 0.8 1
1 - P

out

0

0.2

0.4

0.6

0.8

1

P
F

A
 +

 P
M

D

W = 1, no jammer
W = 4, no jammer
W = 16, no jammer
W = 1, with jammer
W = 4, no jammer
W = 16, no jammer

(a)

0 0.2 0.4 0.6 0.8 1

1 - P
out

0

0.2

0.4

0.6

0.8

1

P
F

A
 +

 P
M

D

no jammer, 
w

2
   {0.15, ..., 1.85} mW

no jammer, 
w

2
 = 0.15 mW

no jammer, 
w

2
 = 1.85 mW

with jammer, 
w

2
  {0.15, ..., 1.85} mW

with jammer, 
w

2
 = 0.15 mW

with jammer, 
w

2
 = 1.85 mW

(b)
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and the same noise variance; (b) with 4 wardens and different noise
variances (� varies from 0.1 to 4).

scenarios without the presence of the jammer monotonically
reduces Alice’s performance. Generally, utilizing multiple
wardens enable the FC to collect more observations. From
the perspective of the FC only, this is analogous to increasing
N (i.e., number of observations). Thus, the results presented
in Fig. 5a almost match to that of the Fig. 4. Introducing
the jammer to the environment significantly improves Alice’s
performance, however, the results under the different number
of wardens overlap. That is, increasing the number of wardens
from 1 to 16 under the presence of the jammer, does not lead
to a significant change in the trade-off between the probability
of error and outage probability. This illustrates the analytical
result presented in Theorem 2.

To further investigate the impact of utilizing multiple
wardens, simulation scenarios are repeated with four war-
dens, each of which has a different noise variance (�2

w
2

{0.15, 0.715, 1.28, 1.85} mW) where the arithmetic mean of
the noise variances is 1 mW. The results with and without the
presence of the jammer are shown in Fig. 5b. To provide a
better analogy, we also include some simulation results with
identical noise variance at wardens. As is shown, except for
very high outage probability requirements, increasing the noise
variance at wardens always results in a higher probability of
error at the FC. Additionally, the presence of the jammer not
only increases the error probability at the FC but also neu-
tralizes the impact of using multiple wardens. This indicates
that the analytical results presented in Theorem 2 applies to
scenarios with non-identical noise variance as well.

VII. CONCLUSIONS

In this paper, we examined the impact of utilizing multiple
colluding wardens on covert communication. The considered

system consisted of Alice, Bob, a friendly jammer, and multi-
ple wardens that provide channel observations to a FC which is
in charge of deciding on the presence of Alice. To confuse the
FC, Alice and jammer randomly vary their transmit power and
jamming power according to a joint distribution, respectively.
Likewise, the FC randomly varies its threshold to confuse
Alice. We formulate the interaction between Alice and the
jammer (one player) and the FC (second player) as a zero-sum
game where Alice and the jammer cooperatively optimize a
utility function reflecting a trade-off between Alice’s outage
probability at Bob and the probability of detection error at the
FC, while the FC optimizes the negative of this utility. The
optimal probability distributions for the transmission powers
and the thresholds are found via linear programming.

Analytical results reveal that without the presence of the
jammer, the optimal threshold distribution (i.e., the Nash
equilibrium strategy) for FC includes only one threshold while
Alice randomizes between at most two transmit powers. Fur-
thermore, we also show that increasing the number of wardens
significantly reduces the outage probability under high covert-
ness requirements. However, utilizing a friendly jammer can
effectively neutralize the advantage of using multiple wardens
for FC. In addition, compared to the uniformly distributed
transmit power scheme and constant power scheme, the game-
theoretic approach significantly enhances Alice’s performance,
especially under the presence of a jammer.
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