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Abstract— In this paper, we consider the optimal controller
design problem against data injection attacks on actuators for
an uncertain control system. We consider attacks that aim at
maximizing the attack impact while remaining stealthy in the
finite horizon. To this end, we use the Conditional Value-at-
Risk to characterize the risk associated with the impact of
attacks. The worst-case attack impact is characterized using
the recently proposed output-to-output `2-gain (OOG). We
formulate the design problem and observe that it is non-
convex and hard to solve. Using the framework of scenario-
based optimization and a convex proxy for the OOG, we
propose a convex optimization problem that approximately
solves the design problem with probabilistic certificates. Finally,
we illustrate the results through a numerical example.

I. INTRODUCTION

Cyber-physical systems (CPSs) represent a large class of
networked control systems where the physical world and the
digital infrastructure are tightly coupled, such as smart cities,
autonomous systems, transportation networks, and Internet
Of Things. However, the trend towards increased usage
of open-standard communication protocols among control
systems has made these systems vulnerable to cyber-attacks
such as Stuxnet [1], Industroyer [2], etc. Such cyber-attacks
can negatively affect the operation of CPS [3].

Significant work is done in detecting and mitigating cyber-
attacks (see [4], [5] and references therein). For instance,
[6] designs an optimal controller in the presence of covert
attacks. The limitation of [6] is, it approximates the risk
metric Conditional Value-at-Risk (CVaR) empirically using
samples, and it parameterizes the controller as a finite family
of Finite Impulse Response (FIR) filters. Although these
approximations simplify the problem, the validity of these
approximations is not discussed except in the asymptotic case
i.e., as the number of samples for empirical approximation
and the number of FIR filters tends to infinity.

The article [7] proposes and solves two controller design
problems. Firstly, it proposes a convex design problem such
that the volume of the reachable set of states by the adversary
is minimized. Secondly, it proposes a convex design problem
that maximizes the Euclidean distance between the set of
states reachable by the adversary and the set of critical states.
A similar approach was also adopted in [8]. However, both
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of these works do not consider an uncertain system. The
works [9] and [10] addresses the issue of jointly designing
the controller and detector against false data injection (FDI)
attacks. However, they also assume a deterministic system.

This paper addresses some of the existing limitations in
the literature, by investigating the optimal controller design
problem against FDI attacks on actuators for an uncertain
control system. To this end, we adopt the following setup.
We consider a discrete-time (DT) linear time-invariant (LTI)
process with parametric uncertainty, a static output feedback
controller, and an anomaly detector. An adversary with
perfect system knowledge injects false data into the actuators.
In reality, it is hard for the adversary to have perfect system
knowledge, but this assumption helps to study the worst-case.
The system operator (or the defender) knows only about the
bounds of the uncertainty. Under this setup, we present the
following contributions.

1) Firstly, we formulate the risk-averse design problem.
Here, for a given realization of the uncertainty, we use
the output-to-output `2-gain (OOG) [11] to character-
ize the worst-case impact. We then use the CVaR to
characterize the risk associated with the attack impact.
The advantages of using the OOG over the classical
H∞/H metrics were demonstrated in [9]. We also
observe that the design problem corresponds to an
untractable infinite non-convex optimization problem.

2) Secondly, extending the results of [12], we derive an
upper bound for the OOG. Using this upper bound,
we relax the infinite non-convex design problem into
an infinite convex design problem.

3) Finally, by adopting the scenario-based approach [13],
we modify the infinite convex optimization problem
into its sampled counterpart. We also provide prob-
abilistic guarantees on the infinite design problem
based on the number of samples used to formulate the
sampled optimization problem and the dimension of
the controller. The advantage of using scenario-based
approach over other approaches is discussed in [14].

To the best of the author’s knowledge, the problem of
risk-sensitive controller design for an uncertain control in the
finite horizon against FDI attacks has not been addressed in
the literature.

The remainder of this paper is organized as follows.
Section II describes the problem background. The design
problem is formulated in Section III. The problem is relaxed
and convexified in Section IV. Section V approximates the
problem empirically using the scenario-based approach. We
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Fig. 1. Control system under data injection attack on actuators

illustrate the results using a numerical example in Section
VI. Finally, we provide concluding remarks in Section VII.

II. PROBLEM BACKGROUND

In this section, we describe the control system structure
and the goal of the adversary. Consider the general descrip-
tion of a finite horizon closed-loop DT LTI system with
a process (P) with parametric uncertainty, a static output
feedback controller (C) and an anomaly detector (D) as
shown in Fig. 1. The closed-loop system is represented by

P :

 xp[k + 1] = A∆xp[k] +Bũ[k]
y[k] = Cxp[k]
yp[k] = CJxp[k]

(1)

C :
{
u[k] = Ky[k]

D :

{
x̂p[k + 1] = Ax̂p[k] +Bu[k] + Lyr[k]
yr[k] = y[k]− Cx̂p[k], k = 0, . . . , Nh − 1.

Here A∆ , A + ∆A(δ) with A representing the nom-
inal system matrix and δ ∈ Ω denoting the probabilistic
parameter uncertainty with probability space (Ω,Da,P). We
assume the uncertainty set Ω ⊂ Rv to be closed, bounded,
and to include the zero uncertainty yielding ∆A(0) = 0.
The state of the process is represented by xp[k], the output
of the process is y[k], ũ[k] is the control signal received
by the process, u[k] is the control signal generated by the
controller, yp[k] is the virtual performance output, and yr[k]
is the residue generated by the detector. In this paper, we
assume all signals have the same dimension nx. That is, we
consider a fully actuated square system. The system is said
to have a good performance over the horizon Nh, when the
energy of the performance output (||yp||2`2,[0,Nh]) is small. In
the closed-loop system described above, we consider that an
adversary is injecting false data into the actuators. An attack
is said to be detected when the energy of the detection output
(||yr||2`2,[0,Nh]) is higher than a predefined threshold (say εr).
We assume that the detection threshold and the detector L
is designed to be robust against all uncertainties.

Given this setup, we now discuss the resources the adver-
sary has access to. For clarity, we establish the following:

Assumption 2.1: (A∆, B) is controllable ∀δ ∈ Ω. /
Assumption 2.2: Matrices B and C are invertible. /

A. Disruption and disclosure resources

The adversary can access the control channels and inject
data. This is represented by ũ[k] = u[k]+a[k], where a[k] ∈

Rnx is the data injected by the adversary. The adversary
cannot access the sensor channels. The adversary does not
have access to any disclosure (eavesdropping) resources.

B. System knowledge

We assume that, at design time, the defender knows the
bounds of the set Ω and that the system matrix A∆ is
known only up to the nominal system matrix A. Next, at
operation time, we assume that the adversary has full system
knowledge. That is, the adversary knows the system matrix
A∆ without any uncertainties. In reality, it is hard for the
adversary to know the system matrices, but this assumption
helps to study the worst case.

The system knowledge is used by the adversary to cal-
culate the optimal data injection attacks. Defining e[k] ,
xp[k] − x̂p[k] and x[k] , [xp[k]T e[k]T ]T , the closed-
loop system under attack with the performance output and
detection output as system outputs becomes

Pcl :

 x[k + 1] = A∆
clx[k] +Bcla[k]

yp[k] = Cpx[k]
yr[k] = Crx[k],

(2)

where A∆
cl ,

[
A∆ +BKC 0

∆A A− LC

]
, Bcl ,

[
B
B

]
,

Cp ,
[
CJ 0

]
, Cr ,

[
0 C

]
.

C. Attack goals and constraints

Given the resources the adversary has access to, the
adversary aims at disrupting the system’s behavior whilst
remaining stealthy. The system disruption is evaluated by
the increase in energy of the performance output, and the
attack signal is deemed to be stealthy when the energy of the
detection output is less than εr. Next, we discuss the optimal
attack policy of the adversary and the design problem of the
defender when the system is deterministic.

D. Design for a deterministic system

From the previous discussions, it can be understood that
the goal of the adversary is to maximize the energy of
the performance output whilst remaining stealthy. When the
system is deterministic (Ω = {0}), the attack policy of the
adversary can be formulated as

q(K, 0) , sup
a∈`2e

‖yp(K, 0)‖2`2

s.t. ‖yr(K, 0)‖2`2 ≤ εr, x(K, 0)[0] = 0,
(3)

where the subscript [0, Nh] is dropped for clarity. In (3),
q(K, 0) is the disruption caused by the attack signal on the
nominal system, yp(K, 0) and yr(K, 0) are the performance
output and the detection output under the given controller
K ∈ Rnx×nx , and Nh is the horizon length. In (3), the
constraint x(K, 0)[0] = 0 is introduced since the system is
at equilibrium before the attack commences.

Assumption 2.3: The system (2) is at equilibrium before
the attack commences. /

The aim of the defender then is to design a controller K
such that the disruption caused by the adversary (q(K, 0))



is minimized. To this end, the design problem can be
formulated as

K∗ = arg inf
K
q(K, 0) (4)

The design problem (4) is optimal only when (2) is
deterministic. By extending (4), we formulate the design
problem when the system is uncertain in the next section.

III. PROBLEM FORMULATION

Consider the data injection attack scenario where the
parametric uncertainty δ ∈ Ω of the system is known to the
adversary but not to the defender. The defender knows only
about the probabilistic description of the set Ω. In reality, it
is hard for the adversary to know the system matrices, but
this assumption helps to study the worst case. Under this
setup, the adversary can cause high disruption by remaining
stealthy as it will be able to inject attacks by solving

q(K, δ) , sup
a∈`2e

‖yp(K, δ)‖2`2

s.t. ‖yr(K, δ)‖2`2 ≤ εr, x(K, δ)[0] = 0,
(5)

where yp(K, δ) and yr(K, δ) are the performance and detec-
tion output corresponding to the controller K and uncertainty
δ. Since the defender does not know the system completely,
q(K, δ) becomes a random variable. Thus, from the defend-
ers point of view, the best option is to choose a feedback
policy K, such that the risk corresponding to the impact
random variable q(K, δ) is minimized. This design problem
can be formulated as Problem 1.

Problem 1: Find an optimal feedback controller K∗ s.t:

K∗ , arg inf
K
RΩ(q(K, δ)),

where RΩ is a risk metric chosen by the defender. The
subscript Ω denotes that the risk acts on the uncertainty
whose probabilistic description is known to the defender. /

Problem 1 searches for a controller K such that the risk
is minimized. Let us consider the setup where the defender
evaluates the risk based on the risk metric CVaR. CVaR
is used in the research community due to its numerous
advantages [15] and is defined in Definition 3.1.

Definition 3.1 (CVaR [13]): Given a random variable X
and α ∈ (0, 1), the CVaR is defined as 1

CVaRα(X) = E{X|X > VaRα(X)},

where VaRα(X) = inf{x|P[X ≥ x] ≤ α}.

CVaRα(X) = β implies that X ≤ β at least α × 100% of
the time on average. /

In our setting, the defender is interested in determining the
controller such that the CVaRα (given α) of the impact ran-
dom variable (q(K, δ)) is minimized. To this end, Problem
1 can be reformulated as

K∗ = arg inf
K

EΩ{q(K, δ)|q(K, δ) > VaRα(q(K, δ))}. (6)

1This Definition assumes the distribution of X has no point masses. For
general definitions of CVaR see [16].

There are two difficulties in solving (6). Firstly, (5) is
non-convex for any given δ. Secondly, since the operator
E operates over the continuous space Ω, the optimization
problem (6) is computationally intensive and in general NP-
hard. To this end, in Section IV, we determine a convex
approximation for (5). We then use this approximation, to
recast (6) as a convex optimization problem. In Section V, we
provide a method to approximate the expectation operator.

IV. DESIGN PROBLEM FORMULATION USING A CONVEX
IMPACT PROXY

In this section, we consider the function q(K, δj) for a
given uncertainty δj ∈ Ω and prove that it has an upper
bound. We then show that the term of the upper bound that
is dependent on the controller (say q̄(·)) is convex in K.
The main objective of performing this step is that, once we
determine the term q̄(·), it can be used in (6) instead of
q(K, δj) to formulate a relaxed convex design problem. To
this end, we will refer to q̄(·) as Impact proxy in the reminder
of the paper.

To derive the upper bound, we begin by defining
the vectors aj ,

[
aj [0]T , . . . , aj [Nh − 1]T

]T
, xp,j ,[

xp,j [1]T , . . . , xp,j [Nh]T
]T

, ej ,
[
ej [1]T , . . . , ej [Nh]T

]T
,

yp,j ,
[
yp,j [1]T , . . . , yp,j [Nh]T

]T
, and yr,j ,[

yr,j [1]T , . . . , yr,j [Nh]T
]T

. Here aj , xp,j , yp,j and yr,j
are the stacked attack vector, system state, performance
output vector and the detection output vectors corresponding
to the uncertainty δj respectively. Let us define the matrices
Fxa(K, δj), Fea(δj), Fex(δj) ∈ RnxNh×nxNh , such that

xp,j = Fxa(K, δj)aj , ej = Fea(δj)aj + Fex(δj)xp,j ,
yp,j = Fp(K, δj)aj , yr,j = Fr(K, δj)aj ,
Fp(K, δj) , (INh

⊗ CJ)Fxa(K, δj),

Fr(K, δj) , (INh
⊗ C)(Fea(δj) + Fex(δj)Fxa(K, δj)).

Under the uncertainty δj , let us represent the system matrix
of (1) by Aj . Then Fυa(K, δj), υ = {x, e} is given by

B 0 . . . 0
Aυ,jB B . . . 0

...
...

. . .
...

ANh−1
υ,j B ANh−2

υ,j B . . . B

 ,
where Ax,j , Aj + BKC and Ae,j , Aj − LC. Similarly
Fex(δj) is given by

0 0 . . . 0
∆A 0 . . . 0

...
...

. . .
...

ANh−2
e,j ∆A ANh−3

e,j B∆A . . . 0


Under these definitions, q(K, δj) can be obtained by the non-
convex optimization problem

q(K, δj) , sup
aj
‖Fp(K, δj)aj‖22

s.t. ‖Fr(K, δj)aj‖22 ≤ εr, x(K, δj)[0] = 0.
(7)



Next, we derive the upper bound of q(K, δj) in Lemma 4.1.
Lemma 4.1: Let δj ∈ Ω and κ , Fp(·)F−1

r (·) (Here the
arguments of Fp and Fr are dropped for clarity). Let the
matrix B be invertible. Then, it holds that

q(K, δj) ≤ µq̄(K, δj)f , q̄(K, δj) , η||K||2F+

nxNh∑
i=2

σi(κ
−1),

where f , nxNh − 1, µ is a term independent of K and η
is a positive scalar weight on the regularization term.

Proof: See Appendix.
In Lemma 4.1, we formulated an upper bound for q(K, δj).

However, only the term q̄(K, δj) of the bound is dependent
on the variable K. Moreover, since (q̄(K, δj))

nxNh−1 is a
monotonically increasing function on q̄(K, δj) > 0, q̄(K, δj)
can be replaced as the term to be optimized. Next, we show
that q̄(K, δj) is strongly convex in the design variable K.

Theorem 4.2: For any given δj ∈ Ω, the function q̄(K, δj)
is strongly convex in the design variable K.

Proof: See Appendix.
We have shown in this section that the term q̄(K, δj) can

be used as the convex proxy objective function for the attack
impact q(K, δj). That is, we can recast (6) as

K∗ = arg inf
K

E{q̄(K, δ)|q̄(K, δ) > VaRα(q̄(K, δ))}. (8)

Although (8) is convex, it is computationally intensive due
to the expectation operator. In Section V, we discuss a method
to approximate the expectation operator.

Remark 1: We use Definition 3.1 to formulate (8). Thus
(8) implicitly assumes that the distribution of q̄ has no point
masses. However, verifying this conditions is beyond the
scope of this paper and is left for future work.

V. EMPIRICAL RISK USING SCENARIO BASED APPROACH

The optimization problem (8) is computationally intensive
since it involves an expectation operator which acts on a
continuum of uncertainties Ω. In this section, we provide a
method to approximate the expectation operator using the
scenario-based approach [13]. To begin with, let us establish
the following:

Assumption 5.1: For any δ, q̄(·, δ) is a convex function in
the design variable K. /

We have shown in Theorem 4.2 that Assumption 5.1 is
satisfied. Next, we approximate the expectation operator in
(8) empirically. To do this, let us begin by sampling the
uncertainty set Ω with N samples. Let us consider that
(δ1, . . . , δN ) is a collection of N independent realizations
from Ω and let ΩN , {1, . . . , N}. Then for any given K,
and i ∈ ΩN , we denote by q̄i(K), the value attained by
q̄(K, δi), and we denote by q̄(i)(K), the N − i + 1th order
statistic. That is q̄(1)(K) ≥ q̄(2)(K) ≥ · · · ≥ q̄(N)(K). Now
we present the first result of the section.

Lemma 5.1: Let the dimension of the design variable K
be d = n2

x. Let N ≥ d and m , dN(1 − α)e. Then,
under Assumption 5.1, the solution to (8) can be obtained
empirically by solving the convex optimization problem

K∗ = arg inf
K

1

m

m∑
i=1

q̄(i)(K). (9)

Proof: It was shown that (9) is the empirical version
of (8) in [13] (See equations (3) and (5) in [13]).

The design problem (9) is formulated using the empirical
formulation of the risk metric CVaR. If we could order the
functions q̄(i)(K), then the problem of obtaining the optimal
controller would be simple. However, q̄(i)(K) is a function
of the optimization variable K. Hence it is not possible to
explicitly define the order without knowing K beforehand.
Alternatively, the design problem (9) can be modified such
that the controller is optimal to any possible ordering of the
functions. To this end, (9) can be recast as

arg inf
K,y

y

s.t.
1

m

m∑
j=1

q̄ij (K) ≤ y,

∀choice of m indices{i1, . . . , im} ⊆ ΩN .

(10)

Since {i1, . . . , im} is any subset of ΩN with cardinality
m, the optimization problem (10) has

(
N
m

)
constraints. To

summarize, (10) is the empirical reformulation of (8).
Using the solution obtained from (10), we provide prob-

abilistic out-of-sample certificate on the random variable
q̄(K, δ), δ ∈ Ω. To this end, let us represent the optimal
controller of (10) as K∗N , and let N ≥ m+ d. Let us define
the out-of-sample Probability of Shortfall (PS) as follows:

Definition 5.1 (Probability of Shortfall): PS is defined as

PS(K∗N ) , P{δ ∈ Ω | q̄(K∗N , δ) ≥ q̄(m+d)(K
∗
N )}. /

By ensuring that the PS(K∗N ) is small (say ε), one can
ensure that the impact proxy under the optimal controller
for any new uncertainty drawn from the set Ω, q̄(K∗N , δ),
exceeds a predefined valued q̄(m+d)(K

∗
N ) (also called as the

shortfall threshold) with a small probability ε. Now we are
ready to present the main result in Theorem 5.2.

Theorem 5.2: It holds that PN{PS(K∗N ) ≤ ε} ,∫ ε

0

Γ(N + 1)

Γ(m+ d)Γ(N + 1−m− d)
pm+d−1(1− p)N−m−ddp,

where Γ is Euler’s Gamma function and ε ∈ (0, 1).

Proof: See Appendix.
Theorem 5.2 provides posteriori results on the confidence

with which PS(K∗N ) is below a small threshold ε. In
other words, Theorem 5.2 states that, the confidence of the
PS(K∗N ) can be evaluated by knowing the dimension of the
decision variable (d), the number of samples (N ), and m.

To recall, in this section we proposed an empirical version
of (8) in (10). We also provided probabilistic guarantees on
the out-of-sample PS. We conclude this section by providing
Algorithm 1 which depicts the outline for solving Problem
1 approximately. In the next section, we depict the efficacy
of the proposed algorithm using a numerical example.

VI. NUMERICAL EXAMPLE

In this section, the efficacy of the design algorithm is
depicted through a numerical example. Consider the system



Initialization: Nh, k, d,Ω, ε;
Step 1: Choose N such that N ≥ m+ d.
Step 2: Extract N independent realizations from Ω.
Step 3: Build the matrix κ−1,∀i ∈ ΩN .
Step 4: Solve the convex optimization problem (10).
Step 5: Given ε, evaluate the confidence using
Theorem 5.2.

Result: K∗N , PS
Algorithm 1: Risk averse design algorithm

TABLE I
RISK AND SHORTFALL THRESHOLD

CVaRα(q̄(K, δ) + 0.1||K||2F ) q̄(m+d)(K
∗
N )

m = 1 20.7160 16.9069
m = 2 20.6436 16.8910

of the form (2) where CJ = C = I3, A,B and L are2 0 1
1 a 0
0 1 b

 ,
1 1 0

0 0.3 1
0 0 1

 , and

1.95 0 1
1 0.36 1
0 1 −0.87

 ,
respectively. Here a ∈ [0.5 1.5] and b ∈ [−0.5 0.5] are
uncertain parameters. The observer gain L is designed using
pole placement method.

Let N = 11, εr = 1, and Nh = 5. The risk and the
corresponding shortfall threshold q̄(m+d)(K

∗
N ) obtained from

Algorithm 1 for different values of m is shown in TABLE I.
The corresponding confidence that the the out-of-sample PS
is less than or equal to ε can be evaluated from the integral in
Theorem 5.2. In reality, the confidence can be made higher
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Fig. 2. Evaluation of controller performance: The plot depicts the distri-
bution of the attack impact q(·) and the impact proxy q̄(·) for 100 different
uncertainties under the nominal and the optimal controller. The optimal
controller is obtained from Algorithm 1 by optimizing CVaR0.8(q̄(·)) with
parameters Nh = 5, N = 11, and m = 2. The nominal controller is
obtained by optimizing q̄(K, 0) for the nominal system. On each box, the
central mark indicates the median, and the bottom and top edges of the box
indicate the 25th and 75th percentiles, respectively. The whiskers extend
to the most extreme data points.

by increasing N or decreasing m.
Next, we depict the efficiency of the proposed design

framework using Fig. 2. It can be seen that: (a) compared
to the nominal controller, the controller obtained from Al-
gorithm 1 lowers the impact proxy q̄(·)); (b) The value of
attack impact (q(·)) is shifted towards a lower median.

VII. CONCLUSION

The problem of risk-optimal controller design against FDI
attacks on actuators of an uncertain control system was stud-
ied. We considered an attacker with perfect system knowl-
edge that maximizes the system disruption whilst remaining
stealthy. We quantified the system disruption using the OOG.
We formulate a design problem where the defender aims at
designing a controller such that its CVaR is minimized. We
proposed a convex optimization problem that approximately
solves the design problem with probabilistic certificates. Fi-
nally, we illustrated the results through a numerical example.

APPENDIX

PROOF OF Lemma 4.1

Before presenting the proof, we provide an intermediate
result which helps to construct the proof.

Lemma A.1 (Inequality of arithmetic and geometric means):
Given N real numbers x1, . . . , xN , it holds that∏N
i=1 xi ≤

(∑N
i=1 xi

N

)N
Proof: [Proof of Lemma 4.1] The convex dual problem

of (7) can be formulated as (11). Furthermore, it was shown
in [17, Theorem 3.1] that the duality gap is zero.

inf{εrγ | FTp (·)Fp(·)− γFTr (·)Fr(·) � 0.} (11)

Pre-multiplying the constraint of (11) by F−Tr (δj) and post-
multiplying by F−1

r (δj), (11) can be rewritten as

εr inf{γ | κTκ � γI.} (12)

Since εr is a pre-defined constant, it can be moved out-
side the optimization problem (12). Using the definition
of singular values, (12) can be re-written as εrσ̄(κ). Thus
we have shown that q(K, δj) = εrσ̄(κ). Next, we prove
that σ̄(κ) ≤ µq̄(K, δj)

nxNh−1. To this end, we can show
that the matrix Fr(·) is a block lower triangular with the
element CB in the leading diagonal. Then Fr(δj)

−1 will

be

B
−1C−1 . . . 0

...
. . .

...
∗ . . . B−1C−1

 , where ∗ represents that

its value is unimportant for now. Then, matrix κ will be of

the form

CJC
−1 . . . 0

...
. . .

...
∗ . . . CJC

−1

 . Since κ is block lower

triangular, its determinant is the product of determinant of
diagonal blocks [12, Proof of Theorem A.1]. Thus det(κ) =
|det(CJC

−1)Nh | , c. Since the product of singular values
of a matrix is equal to its determinant, we get

σ̄(κ) =
c∏nxNh−1

i=1 σi(κ)

1
= c

nxNh∏
i=2

σi(κ
−1). (13)



The equality 1 in (13) follows since the singular values of
κ and κ−1 are reciprocals of each other. By using the result
of Lemma A.1, the term εrσ̄(κ) can be bounded as

εrσ̄(κ) ≤ εr|det(CJC)Nh |
(∑nxNh

i=2 σi(κ
−1)

nxNh − 1

)nxNh−1

=
εr|det(CJC)Nh |

(nxNh − 1)nxNh−1︸ ︷︷ ︸
µ

( nxNh∑
i=2

σi(κ
−1)
)nxNh−1

≤ µ
( nxNh∑

i=2

σi(κ
−1) + η||K||2F︸ ︷︷ ︸
q̄(K,δj)

)nxNh−1

(14)

where the last inequality follows since µ and η||K||2F are
non-negative terms. In (14), only the term q̄(K, δj) is depen-
dent on the design variable K. This concludes the proof.

PROOF OF Theorem 4.2

Proof: Since κ = Fp(·)Fr(·)−1, it follows that κ−1 =

Fr(K, δj)Fxa(K, δj)
−1(INh

⊗ CJ)−1

= (INh
⊗C)(Fea(δj)Fxa(K, δj)

−1+Fex(δj))(INh
⊗CJ)−1.

Here all the matrices are independent of the design variable
K except Fxa(K, δj)

−1. It can be verified by matrix multi-
plication that Fxa(K, δj)

−1 is of the form
B−1 0 0 . . . 0

−B−1Ax,j B−1 0 . . . 0
0 −B−1Ax,j B−1 . . . 0
...

...
. . .

...
0 0 0 . . . B−1


The matrix Ax,j is affine in K and thus the same holds for
κ−1. It can also be shown that the sum of singular values
of a matrix, X →

∑
σ(X), is convex [18]. Thus we have

proven that the term
∑
σ(κ−1) is convex in K. Since the

regularization term ||K||2F is strictly convex in K, we then
conclude that q̄ij (K, δ)+η||K||2F is a strictly convex function
in K which concludes the proof.

PROOF OF Theorem 5.2

Before presenting the proof, we provide an intermediate
result: Theorem A.2, which follows from applying [13, The-
orem 3.1] to our problem setup.

Theorem A.2: Let us suppose that (a) a solution to (10)
exists and it is unique almost surely, and (b) for a sample
(δ1, . . . , δN ) of independent realizations from Ω, the event
that { ∃ K|q̄i(K),∀ i ∈ ΩN has the same value} has zero
probability. Then PN{PS(K∗N ) ≤ ε} has a Beta(m+d,N+
1−m− d) distribution.

That is, Theorem A.2 states that the result of Theorem 5.2
follows if (a) and (b) hold, which we prove next.
Proof: Proof that (a) holds: We intend to show that the
(10) has a unique solution. However, as discussed in the
paper, (10) is simply a reformulation of (9). Thus, we can
equivalently show that the solution to (9) is unique.

In Theorem 4.2, we have shown that the term q̄ij (K) is
strongly convex function in K. The uniqueness of the optimal
solution, K∗N , then follows from the strict convexity of the
objective function.
Proof that (b) holds: We prove by contradiction. Let us
assume that ∃K, l and independent samples (δ1, . . . , δN )
such that PN{q̄i(K) = l, i = 1, 2, . . . , N} = θ ≥ 0. Then
by definition, ∃ δj such that P{δj |q̄j(K) = l} 6= 0. However
this contradicts the assumption that the distribution of q̄(·)
has no point masses. This concludes the proof.
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