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Abstract— This paper firstly addresses the problem of risk
assessment under false data injection attacks on uncertain
control systems. We consider an adversary with complete
system knowledge, injecting stealthy false data into an uncertain
control system. We then use the Value-at-Risk to characterize
the risk associated with the attack impact caused by the
adversary. The worst-case attack impact is characterized by the
recently proposed output-to-output gain. We observe that the
risk assessment problem corresponds to an infinite non-convex
robust optimization problem. To this end, we use dissipative
system theory and the scenario approach to approximate the
risk-assessment problem into a convex problem and also provide
probabilistic certificates on approximation. Secondly, we con-
sider the problem of security measure allocation. We consider
an operator with a constraint on the security budget. Under
this constraint, we propose an algorithm to optimally allocate
the security measures using the calculated risk such that the
resulting Value-at-risk is minimized. Finally, we illustrate the
results through a numerical example. The numerical example
also illustrates that the security allocation using the Value-at-
risk, and the impact on the nominal system may have different
outcomes: thereby depicting the benefit of using risk metrics.

I. INTRODUCTION

Critical infrastructures describe the assets that are vital for
the normal operation of society. In general, control systems
are an integral part of critical infrastructures. Examples
include pH control systems in a bioreactor, frequency control
of power generating systems, etc. Due to the vitality of their
operation, and partly due to advances in technology, these
control systems are monitored regularly through wireless
digital communication channels [1]. And due to the increased
use of non-secure communication channels, the control sys-
tems are prone to cyber-attacks such as the attack on the
Ukrainian power grid, and the Kemuri cyber attack to name
a few [2]. Thus there is an increased research interest in the
cyber-security of control systems [3].

One of the common recommendations for improving the
security of control systems is to follow the risk management
cycle: Risk assessment, risk response, and risk monitoring
[4]. The risk assessment step involves careful consideration
of risk sources, their likelihood, and their consequences. The
consequence can be quantified in terms of impact which can
be obtained through simulation or optimization-based meth-
ods. The risk response step involves implementing additional
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measures to minimize the risk if and when necessary. The
risk response step can involve either (i) re-designing of the
system controller/detectors to be robust against attacks, or
(ii) allocating additional security measures such as encrypted
communication channels. Finally, the risk monitoring step
involves constant monitoring of the risk at acceptable inter-
vals of time. This paper studies the risk assessment and risk
response step of the risk management cycle.

Although the risk assessment and the risk response steps
have been studied in the literature [4, Chapter 2], there
are some research gaps that are outlined next. Firstly, the
majority of the literature considers a deterministic system [5],
[6]. Secondly, the risk frameworks are mostly application-
specific. For instance, [7], [8] and [9] determine the risk
of cyber-attacks on automatic generation control, power sys-
tems, and energy storage systems in smart grids respectively.

To address these limitations, we consider the following
setup. A discrete-time (DT) linear time-invariant (LTI) pro-
cess with uncertainties, an output feedback controller, and an
anomaly detector. A stealthy adversary with complete system
knowledge injects false data into the sensor or actuator
channels for a long but finite amount of time. With this setup,
we provide the following contributions.

1) We formulate the risk assessment problem using the
Value-at-Risk (VaR) as a risk metric and the Output-
to-Output Gain (OOG) as an impact metric.

2) We observe that the risk-assessment problem is NP-
hard in general. To this end, we propose an approxi-
mate risk assessment problem that is computationally
tractable.

3) We show that the approximate risk assessment prob-
lem can be solved by an equivalent convex semi-
definite program (SDP). We provide the necessary and
sufficient conditions for the (approximate) risk to be
bounded.

4) We provide a preliminary algorithm to optimally allo-
cate security measures using the calculated risk.

5) We numerically illustrate that the security measure
allocation using the Value-at-risk, and the impact on
the nominal system may have different outcomes. We
thereby depict the advantage of using risk metrics as
suggested in this paper.

The remainder of the paper is organized as follows. The
control system and the adversary are described in Section
II. The risk assessment problem (RAP) is formulated in
Section III. We approximate the RAP and convert it to a
convex SDP in Section IV. In Section V we formulate the
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security measure allocation problem (SMAP) and provide an
algorithm which solves the SMAP for small-scale systems.
The results are illustrated through a numerical example in
Section VI. Finally, we conclude the paper in Section VII.

Notation: Throughout this paper, R,C,Z and Z+ represent
the set of real numbers, complex numbers, integers and non-
negative integers respectively. A positive semi-definite matrix
A is denoted by A � 0. Let x : Z→ Rn be a discrete-time
signal with x[k] as the value of the signal x at the time step
k. Let the time horizon be [0, N ] = {k ∈ Z+| 0 ≤ k ≤ N}.
The `2-norm of x over the horizon [0, N ] is represented
as ||x||2`2,[0,N ] ,

∑N
k=0 x[k]Tx[k]. Let the space of square

summable signals be defined as `2 , {x[k] : Z+ →
Rn| ||x||2`2,[0,∞] < ∞} and the extended signal space be
defined as `2e , {x[k] : Z+ → Rn| ||x||2[0,N ] < ∞,∀N ∈
Z+}. For the sake of simplicity, we represent ||x||2`2,[0,∞] as
||x||2`2 . For x ∈ R, dxe represents the nearest integer ≥ x.
For any finite set Q, and element of Q is represented by q(·),
and the cardinality of the set is represented by |Q|.

II. PROBLEM BACKGROUND

In this section, we describe the control system structure
and the goal of the adversary. Consider a closed-loop DT
LTI system with a process (P), output feedback controller
(C) and an anomaly detector (D) represented by

P :

 xp[k + 1] = A∆xp[k] +B∆ũ[k]
y[k] = C∆xp[k]
yp[k] = C∆

J xp[k] +D∆
J ũ[k]

(1)

C :

{
z[k + 1] = Acz[k] +Bcỹ[k]
u[k] = Ccz[k] +Dcỹ[k]

(2)

D :

{
s[k + 1] = Aes[k] +Beu[k] +Keỹ[k]
yr[k] = Ces[k] +Deu[k] + Eeỹ[k]

(3)

where A∆ , A + ∆A(δ) with A representing the nominal
system matrix and δ ∈ Ω. Additionally we assume Ω to be
closed, bounded and to include the zero uncertainty yielding
∆A(0) = 0. The other matrices are similarly expressed. The
state of the process is represented by xp[k] ∈ Rnx , z[k] ∈
Rnz is the state of the controller, s[k] ∈ Rns is the state
of the observer, ũ[k] ∈ Rnu is the control signal received
by the process, u[k] ∈ Rnu is the control signal generated
by the controller, y[k] ∈ Rnm is the measurement output
produced by the process, ỹ[k] ∈ Rnm is the measurement
signal received by the controller and the detector, yp[k] ∈
Rnp is the virtual performance output, and yr[k] ∈ Rnr is the
residue generated by the detector. The closed-loop system is
also shown in Fig. 1. The reason to adopt uncertainty only
in the process is that the parameters of the controller and
the detector are chosen by the system operator. However the
parameters of the process may not be known to the operator
due to a variety of reasons such as, e.g. modelling errors.

In general, the system is considered to have a good
performance when the energy of the performance output
||yp||2`2 is small and an anomaly is considered to be detected
when the detector output energy ||yr||2`2 is greater than
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Fig. 1. Control system under data injection attack

a predefined threshold, say εr. Without loss of generality
(w.l.o.g.), we assume εr = 1 in the sequel.

A. Data injection attack scenario

In the closed-loop system described in (1)-(3), we consider
that an adversary is injecting false data into the sensors or
actuators of the plant but not both. Given this setup, we now
discuss the resources the adversary has access to.

1) Disruption and disclosure resources: The adversary
can access (eavesdrop) the control and sensor channels and
can inject data. This is represented by

[
ũT [k] ỹT [k]

]T
=[

u[k]
y[k]

]
+

[
Ba
Fa

]
a[k],

[
BTa DT

a

]
,

[
ETa 0
0T FTa

]
where a[k] ∈ Rna is the data injected by the adversary.
The matrix Ea(Fa) is a diagonal matrix with Ea(i, i) =
1 (Fa(i, i) = 1), if the actuator (sensor) channel i is under
attack and zero otherwise.

2) System knowledge: We assume that, the system oper-
ator knows the bounds of the set Ω and the nominal system
matrices. Next, we assume that the adversary has full system
knowledge, i.e., s/he knows the system matrices (1),(2), and
(3). In reality, it is hard for the adversary to know the system
matrices, but this assumption helps to study the worst case.

Defining x[k] , [xp[k]T z[k]T s[k]T ]T , the closed-
loop system under attack with the performance output and
detection output as system outputs becomes

x[k + 1] = A∆
clx[k] +B∆

cla[k]
yp[k] = C∆

p x[k] +D∆
p a[k]

yr[k] = C∆
r x[k] +D∆

r a[k],
(4)

where the nominal matrices are given by
[
Acl Bcl

]
, A+BDcC BCc 0

BcC Ac 0
(BeDc +Ke)C BeCc Ae

BBa +BDcDa

BcDa

(BeDc +Ke)Da


Cp ,

[
CJ +DJDcC DJCc 0

]
Cr ,

[
(DeDc + Ee)C DeCc Ce

]
Dp , DJ(DcDa +Ba), Dr , (DeDc + Ee)Da.

In this paper, we consider the adversarial setup where the
adversary is omniscient.

Definition 2.1 (Omniscient adversary): An adversary is
defined to be omniscient if it knows the matrices in (4). /



In reality, it is hard for an adversary to know the system
matrices of (4) due to the uncertainty. Thus, such an adver-
sarial setup is far from reality but it can help us study a
worst-case scenario. For clarity, we assume the following.

Assumption 2.1: The control system (4) is stable ∀δ ∈ Ω./
Assumption 2.2: The input matrix has full column rank

i.e., @ s ∈ Rna 6= 0 such that B∆
cl s = 0. /

3) Attack goals and constraints.: Given the resources the
adversary has access to, it aims at disrupting the system’s
behavior while staying stealthy. The system disruption is
evaluated by the increase in energy of the performance
output whereas, the adversary is stealthy if the energy of
the detection output is below a predefined threshold (εr).
We discuss the attack policy for a deterministic system next.

B. Optimal attack policy for the nominal system

From the previous discussions, it can be understood that
the goal of the adversary is to maximize the performance
cost while staying undetected. When the system (4) is
deterministic, [10] formulates that the attack policy of the
adversary as the following non-convex optimization problem

||Σ||2`2e,yp←yr , sup
a∈`2e

||yp||2`2

s.t.||yr||2`2 ≤ 1, x[0] = 0, x[∞] = 0,
(5)

where ||Σ||2`2e,yp←yr represents the OOG that characterizes
the disruption caused by the attack signal a. In (5), the
constraint x[0] = 0 is introduced because the system is
assumed to be at equilibrium before the attack.

Assumption 2.3: The closed-loop system (4) is at equilib-
rium x[0] = 0 before the attack commences. /

We also assume that the adversary has finite amount of
energy (similar to H∞ control). Thus, the adversary does not
attack the system for an infinite amount of time but stops
after a very long time, say T . And since the attack stops,
the state is brought back to equilibrium. To this end, we
introduce the constraint x[∞] = 0 in (5).

In the literature, such characterization of the impact of
stealthy attacks (5) has only been studied for fully known
deterministic systems, but not for an uncertain system. Thus,
the first goal of the paper is to quantify the impact in terms
of risk on the uncertain system (4). We later describe, in
Section V, as to how the attack impact determined can be
used for the benefit of the system operator.

III. PROBLEM FORMULATION

To quantify the risks of data injection attacks on an
uncertain control system, we start by defining a random
variable that characterizes the impact as a function of the
system uncertainty and the attack vector.

Definition 3.1 (Impact random variable): Let the random
variable XA(·) be defined as

XA(a, δ) , ‖yp(δ)‖2`2 × I
(
‖yr(δ)‖2`2 ≤ 1, x(δ)[∞] = 0

)
where XA(·) is the impact caused on the system (4) with
the uncertainty δ ∈ Ω by the attack vector a ∈ `2e,

I is the indicator function, yp(δ), yr(δ) and x(δ) are the
performance, residue output and state of the system with
the isolated uncertainty δ. Here, the signals yp(δ), yr(δ) and
x(δ) are also functions of the attack vector a. /

With the random variable defined in Definition 3.1, we
next formulate the risk assessment problem. Consider the
data injection attack scenario where the parametric uncer-
tainty δ ∈ Ω of the system is known to the adversary but not
to the system operator. The system operator has knowledge
only about the bounds of the set Ω. Recall that such a
scenario is far from reality, but such a setup helps us study
the worst case. Under this setup, the adversary can cause high
disruption by remaining stealthy because the adversary will
be able to inject attacks by solving the optimization problem

||Σ̃(δ)||2`2e,yp←yr , sup
aδ∈`2e

XA(aδ, δ), (6)

where aδ represents the attack vector corresponding to the
uncertainty δ. Since the system operator does not know
the uncertainty δ, ||Σ̃(δ)||2`2e,yp←yr can be interpreted as
a random variable. Thus, for the system operator, the best
option is to assess the risk associated with the impact based
on a risk metric. In this paper, we adopt the risk metric VaR
[11].

Definition 3.2 (Value-at-Risk (VaR)): Given a random
variable X and β ∈ (0, 1), the VaR is defined as

VaRβ(X) , inf{x|P[X ≤ x] ≥ 1− β}.

With a specified probability level β ∈ (0, 1), VaRβ is the
lowest amount of x such that with probability 1 − β, the
random variable, X , does not exceed x. /

Therefore, by calculating VaRβ , one can ensure that the
probability that the value (X) exceeds VaRβ is less than or
equal to β. In our setting, the system operator is interested in
determining the VaRβ given a small β such that the impact
rarely exceeds VaRβ . Given that the impact caused by the
adversary on (4) is characterized by ||Σ̃(δ)||2`2e,yp←yr , the
VaRβ(·) can be obtained, using Definition 3.2, by solving

γOA , inf
γ
γ

s.t. PΩ(||Σ̃(δ)||2`2e,yp←yr ≤ γ) ≥ 1− β,
(7)

where γOA represents the VaR associated with the impact
caused by an Omniscient Adversary.

Although VaR is not extensively used in the literature [11],
it is used here to only assess the worst-case risk even though
this setup may be deemed unrealistic. Since P in (7) operates
over the continuous space Ω, the optimization problem is
computationally intensive or in general NP-hard [12, Section
3]. Besides (6) is a non-convex [10]. In Section IV we discuss
a method to solve (7) approximately and efficiently.

IV. RISK ASSESSMENT

To recall, (7) is computationally intensive since Ω is a
continuum. To this end, in this section we determine an ap-
proximate solution to (7) and also provide some probabilistic
certificates using the scenario approach introduced in [13].



A. Discrete uncertainty set

In this section, we consider a discrete uncertainty set Ω.
The results of this section is the basis for addressing a contin-
uous uncertainty set next. For brevity, given a sampled uncer-
tainty δi ∈ Ω, we define Σ̃p,i , (Acl,i, Bcl,i, Cp,i, Dp,i) and
Σ̃r,i , (Acl,i, Bcl,i, Cr,i, Dr,i) with yp(δi) = ypi, yr(δi) =
yri and x(δi) = xi as the outputs and states of Σ̃p,i and Σ̃r,i
correspondingly. For such an isolated uncertainty, (6) can be
rewritten as

||Σ̃(δi)||2`2e,yp←yr , sup
ai∈`2e

XA(ai, δi)

=

 sup
ai∈`2e

‖yp,i‖2`2

s.t. ‖yr,i‖2`2 ≤ 1, xi[∞] = 0

 (8)

where ai is the attack vector corresponding to the uncertainty
δi. The optimization problem (8) has two disadvantages: it
is non-convex and intractable (since the optimizer is infinite-
dimensional). To this end, we can use the Lagrange dual
function to reformulate the non-convex problem into its
dual-counterpart. Furthermore, we can use dissipative system
theory to convert the intractable non-convex problem to a
convex problem with LMI constraints which is tractable. This
reformulation is presented in Lemma 4.1.

Lemma 4.1: The optimization problem (8) is equivalent
to the convex SDP (9).

min
γi≥0,Pi=PTi

{
γi

∣∣∣M(γi, δ
i, Pi) � 0

}
(9)

where M(γi, δ
i, Pi) ,

[
ATcl,iPiAcl,i − Pi ATcl,iPiBcl,i
BTcl,iPiAcl,i BTcl,iPiBcl,i

]
+[

CTp,i
DT
p,i

] [
Cp,i Dp,i

]
− γi

[
CTr,i
DT
r,i

] [
Cr,i Dr,i

]
.

Proof: The result is similar to [10, Theorem 1] and
thus the proof is omitted.
Next, we discuss the the conditions for boundedness of
||Σ̃(δi)||2`2e,yp←yr in the Lemma 4.2.

Lemma 4.2 (Boundedness): Consider the closed-loop sys-
tem (4) with an uncertainty δi which is known to the
adversary. Then, the optimal value of (9) is bounded if and
only if one of the following conditions hold:

1) The system Σ̃r,i has no zeros on the unit circle.
2) The zeros on the unit circle of the system Σ̃r,i (includ-

ing multiplicity and input direction) are also zeros of
Σ̃p,i.

Proof: See appendix.
Lemma 4.2 states that the attack impact caused by an om-

niscient adversary on (4) with an uncertainty δi is bounded if
either, there does not exist an attack vector which makes the
output yr identically zero, or all attack vectors which yields
yr identically 0 also yields yp identically zero.

In this section, we formulated the results on characterizing
the attack impact by a convex SDP and the condition for
its boundedness for an isolated discrete uncertainty. Next,
the approach discussed in this section for risk assessment is
extended when considering a continuum of uncertainties.

B. Continuous uncertainty set
The optimization problem (9) can be directly extended to

solve (7) only when we consider a discrete set Ω. But (7) that
we intend to solve operates over a continuous set Ω. Using
the framework of scenario-based reliability estimation [13],
Ω can be approximated with a finite set. With this scenario-
based framework we revisit (7) in Theorem 4.3.

Theorem 4.3: Let ε1 ∈ (0, 1) represent the accuracy with
which the probability operator PΩ in (7) is to be approxi-
mated. Let β1 ∈ (0, 1) represent the confidence with which
the accuracy ε1 is guaranteed, i.e.,

P{|PΩ(||Σ̃(δ)||2`2e,yp←yr ≤ γ)− P̂N1 | ≥ ε1} ≤ β1.

Here P̂N1 represents the approximation of the probability
operator PΩ in (7) defined as

P̂N1
,

1

N1

N1∑
i=1

I
(
||Σ̃(δi)||2`2e,yp←yr ≤ γ

)
,where

N1 ≥
1

2ε21
log

2

β1
. (10)

Then, the VaRβ defined in (7) can be obtained with an
accuracy ε1 and confidence β1 by solving

γ̂OA =


min γ

s.t.
1

N1

N1∑
i=1

I (γi ≤ γ) ≥ 1− β,

 (11)

where γ̂OA represents the VaRβ with an accuracy ε1, and I
is the indicator function. The value of γi, i = 1, . . . , N1 is
obtained by solving the convex SDP (9).

Proof: See appendix.
Theorem 4.3 states that, to solve (11), one could solve

the optimization problem (9) for N1 unique realizations of
the uncertainty. Since strong duality holds between (8) and
(9), the optimal value of the dual optimization problem (11)
indeed provides the VaRβ with an accuracy ε1 and confidence
β1. Thus Theorem 4.3 provides a method to determine the
risk through a sampled uncertainty set, and provides apriori
probabilistic certificates on the accuracy and confidence of
the operator P. Next, by extending Lemma 4.2, the condition
for boundedness of (11) is stated in Lemma 4.4.

Lemma 4.4 (Boundedness): Consider N1 independent and
identically distributed realizations of (4), each with an un-
certainty δi. The optimal value of (11) with these N1 system
realizations is bounded iff the optimal value of (9) is bounded
for at least dN1(1− β)e system realizations.

Proof: See appendix.
The interpretation of Lemma 4.4 is that the system operator

tolerates a fraction (β × 100%) of cases where the impact
(9) is unbounded. Conversely, even-though the impact is
unbounded for certain realization of uncertainty, the risk will
still be bounded. This allows the system operator to be less
pessimistic: In the sense that, even though the attack impact
in certain scenarios can be very high, the risk evaluated by
the operator will be bounded. In the next section, we briefly
discuss the benefit of determining the risk and how it can be
used by the system operator.



V. OPTIMAL ALLOCATION OF SECURITY MEASURES

In this section, we discuss how the RAP discussed in
Section IV can be used for the benefit of the operator. That is,
after determining the risk, the operator might be interested in
the question “If the risk value is not acceptable what actions
steps can be taken?”. To this end, the determined risk can
be used in two ways. On one hand, the operator can use
the risk as a metric to design the controllers/detectors of the
system optimally [14]. On the other hand, the risk can be
used to allocate the security measures optimally [4, Chapter
5] which is the problem considered here.

Let nw be the number of secure resources. In reality,
secure resources refer to some form of secure communication
channels for the sensors and actuators such that an attack
cannot occur. If the number of secure resources (nw) is
equal to the number of actuators and sensors (nu + ny),
then the SMAP is solved trivially. However, in general
nw << nu + ny since secure communication channels are
expensive1. Thus, we discuss a method to optimally allocate
the security measures when they are limitedly available.

To formulate the problem, we define the following. The
set of all sensors (actuators) is represented by S(A), where
|S| = ny(|A| = nu). The set of all vulnerabilities is repre-
sented by V . Any sensor (actuator) is a vulnerability if the
operator believes that an adversary might be able to access
the sensor (actuator) channels. Thus |V| = nv ≤ ny + nu.
Let the set of secure resources be represented by W where
|W| = nw. And as discussed before nw << nv ≤ ny + nu.
Then the SMAP has the following structure.

Firstly, the operator aims at optimizing the risk metric.
Secondly, if an actuator (sensor) i ∈ V is secure, then the
corresponding actuator (sensor) channels cannot be accessed
by the adversary (C1). Recall from Section II, that the matrix
Ea(Fa) is a diagonal matrix with Ea(i, i) = 1 (Fa(i, i) =
1), if the actuator (sensor) channel i is under attack and zero
otherwise. And, as discussed before, the operator can only
secure nw actuators (sensors) at most (C2). To this end, the
optimal SMAP under actuator attacks can be formulated as

{γ̂∗OA,W ∗} =



inf
zi
γ̂OA(z)

s.t. (C1)Ea(i, i) = zi, ∀i ∈ V

(C2)
∑
i∈V

(1− Ea(i, i)) ≤ nw

zi ∈ {0, 1}, ∀i


(12)

where, γ̂∗OA is the optimal risk after the security measures
are allocated, the corresponding optimal vulnerabilities to be
protected are represented by W ∗, and where the constraint
C2 considers that a vulnerable actuator is protected if and
only if the corresponding actuator has Ea(i, i) = 0. Simi-
larly, when the sensors are under attack, the optimal SMAP
can be formulated by replacing Ea(·) by Fa(·) in (12).

The optimization problem (12) is hard to solve since it is
a combinatorial problem. That is, the operator has to search
through the whole set of V to secure nw vulnerabilities. And

1by expensive we here mean encryption and processing costs

it is well known that combinatorial problems with a large
search space (V) are NP-hard in general. Thus, providing a
heuristic to solve (12) is beyond the scope of this paper and
is left for future work. Interested readered are referred to
[4, Chapter 5]. However, we provide a scheme to solve (12)
when |V| is small in Algorithm 1.

Algorithm 1: Algorithm to solve SMAP

Initialization: β, ε,Ω, ε,V, nw an empty list γl
Step 1: Determine Q which is the set of all subsets
of V with maximum cardinality nw.

Step 2: For all q(·) = Q, do:
1) Set Ea(i, i) = 0 if i ∈ q(·) and 1 otherwise.
2) Determine γ̂OA with the new Ea.
3) Append γl with γ̂OA

Step 3: Determine the minimum of γl which is γ∗OA.
Step 4: Determine the corresponding q∗(·) which
yields γ∗OA.
Step 5: Set W ∗ , q∗(·).
Result: γ̂∗OA,W ∗

The algorithm first determines all possible subsets of the
vulnerabilities with the maximum cardinality of nw. Then,
the operator determines the maximum attack impact caused
by the adversary when these various subsets of vulnerabilities
are protected. It then selects the set of vulnerabilities (W ∗)
which yields the minimum attack impact (γ∗OA).

In this section we discussed how the risk determined in
Section IV can be used by the system operator to optimally
allocate the security measures. In the next section, we will
illustrate what results can be obtained by a simple example.

VI. NUMERICAL EXAMPLE

In this section, the effectiveness of the proposed Algo-
rithm 1 is illustrated through a numerical example. Consider
the system described in (4) with C = CTJ = I3, Ea = I2

[
A B∆

]
=

 1 0 1
1 0.5 0
0 1 −0.5

1.5 + δ 0
0.3 0
0 1

 ,
Ω , [−0.5, 0.5], Ae = A,Be = B,Ce =
C,
[
DT
c Ke

]
= −0.066 0.178

0.047 0.940
0.524 −1.346

0.393 0 1
1 −0.048 0
0 1 −0.996

 ,
and all the other unspecified matrices are zero. In the system
description, only the matrix B∆ is a function of the uncertain
variable. And the system has no uncertain zeros on the unit
circle, which makes the condition of Lemma 4.1 hold ∀δ ∈ Ω.
Thus, for a nominal system with δ = 0, the OOG obtained
by solving (5) is ||Σ||2`2e,yp←yr = 197.76.

Let ε1 = 0.05, β1 = β = 0.1 and N1 = 235 which
satisfies (10). Here 1 − ε1 represents the accuracy of the
approximation of the probability operator in determining the



Fig. 2. The parameter β is shown on the Y-axis and the corresponding
VaRβ on the X-axis. The red line indicates VaR0.1. The blue dots denotes
the value of the impact random variableX|X < V aR0.1, whereas the black
dots denotes the value of the impact random variable X|X > V aR0.1. It
can be seen that the probability that X > V aR0.1 is low when β is small.

VaRβ . And β1 represents the guarantee. We then solve (11)
and obtain γOA = 347.15.

The optimization problem (11) is solved as follows. The
set Ω is sampled for N1 samples. The value of γi ∀i =
{1, . . . , N1} is obtained by solving the SDP (9). From these
values of γi, we choose γOA such that the P(γi ≥ γOA) = β.
Maintaining ε1 and β1 constant, for varying values of β, the
value of γOA = VaRβ(X) is shown in Fig. 2.

Fig. 2 depicts that the value of the impact is greater than
the VaR with a probability β and confidence 1−ε1. To recall,
by determining VaRβ for a given β, the operator can ensure
that the impact of any stealthy attack impact is greater than
VaRβ with probability β. After determining the VaR, the
operator decides if the risk is acceptable or not. If the risk
is not acceptable, the risk can be minimized for a given β
by implementing additional security measures.

We next use the risk metric determined to allocate the
security measures. Let V = S = {S1, S2, S3}. That is,
we assume that all sensors communication channels are
vulnerable to attacks. Then, we determine the risk when
there are no security measures available (|X | = 0). Next,
we determine the risks when there is only one security
measure available (|X | = 1). That is, we determine the risks
corresponding to the setup where either S1, S2 or S3 is
protected. And finally, we determine the risks when there
are two security measure available (|X | = 2). That is, we
determine the risk corresponding to the setup where either
{S1, S2}, {S2, S3} or {S3, S1} are protected. The risks are
depicted in the left diagram of Fig. 3 in blue, where the text
on the top of the bar depicts the sensors that are protected.
From Fig 3, we can conclude that (i) when |X | = 1, it is
optimal to secure S3 since it minimizes the risk the most,
and (ii) when |X | = 2, it is optimal to secure S2, and S3.

We repeat the procedure for the actuators where V = A =
{A1, A2}. That is, we assume that all actuator communica-
tion channels are vulnerable to attacks. The risks are depicted

Fig. 3. The VaR0.1 after protecting various combination of sensors
(actuators) are depicted on the left (right) figure in blue. The text on the
top of each bar denotes the sensor (actuator) that is protected. For instance,
“None” represents that none of the sensors are protected. The bar at position
“1” of the figure in left corresponds to the risk when none of the sensors are
protected and the corresponding risk was found to be 9081.4. The Y axis
of the figure is not extended to show this value since it would affect clarity
of the figure. The plots in red represent the impact on the nominal system
after the security measures are allocated using the impact on the nominal
system as a metric.

in the right diagram of Fig. 3 in blue. From Fig. 3, we can
conclude that (i) when |X | = 1, it is optimal to secure A1
(actuator 1), and (ii) it is much more riskier to leave the
sensors unprotected since the risk of unprotected sensors is
higher than unprotected actuators.

Finally, we show the advantage of using the risk metric.
We use the impact on the nominal system as a metric to
allocate the protection resources. That is, instead of solving
the SMAP with the risk determined from (11), we simply
solve the optimization problem (9) for the nominal system
and use it as a metric to allocate the security measure. To this
end, we determine the impact on the nominal system when
|X | = 0, |X | = 1, and |X | = 2. The corresponding impact
are shown in Fig. 3 in red. It can be seen that the conclusion
that we drew using the risk metric are not reproducible when
we use the nominal impact as a metric. For instance, when
the sensors are under attack and |X | = 1, the conclusion
from the risk metric is to protect S3, whereas if we use the
nominal impact, we end up protecting S2. Similarly, when
the actuators are under attack and |X | = 1, the conclusion
from the risk metric is to protect A1, whereas if we use the
nominal impact, we end up protecting A2.

VII. CONCLUSION

In this paper, we first addressed the RAP of false data
attacks injected by an omniscient adversary on uncertain
control systems. We formulated the RAP and observed that it
is a non-convex infinite robust optimization problem. Using
the theory of dissipative systems and scenario approach, we
approximated the RAP as a convex SDP with probabilistic
certificates. The necessary and sufficient conditions for the
risk to be bounded were also formulated. Secondly, we



consider the optimal SMAP. We used the risk determined as
a metric to formulate the SMAP. We provide a preliminary
algorithm to solve the allocation problem. The results were
depicted through a numerical example. Future works include
(i) considering a process with process and measurement
noise, and (ii) providing a more detailed solution for the
allocation problem.

APPENDIX

PROOF OF Lemma 4.2

Proof: To recall, the optimization problem (9) was
formulated using 3) in [15, Proposition 2] where y1 =

√
γyr

and y2 = yp. Due to the equivalency between 3) and 4) of
[15, Proposition 2], the Frequency Domain Inequality (FDI)
G1(z̄)TG1(z) − G2(z̄)TG2(z) � 0 should hold ∀ |z| = 1.
Since we know that y1 =

√
γyr and y2 = yp, we can deduce

that G1(z) corresponds to
√
γG̃r,i(z) and G2(z) to G̃p,i(z)

in FDI, where G̃r,i(z1) , Cr,i(z1I − Acl,i)−1Bcl,i + Dr,i

and G̃p,i(z1) , Cp,i(z1I − Acl,i)−1Bcl,i + Dp,i. Thus, (9)
can be rewritten as

inf
γi≥0

γi
∣∣∣∣∣ γiG̃r,i(z̄)T G̃r,i(z)− G̃Tp,i(z̄)G̃p,i(z)︸ ︷︷ ︸

H(z,γi)

� 0,∀|z| = 1


which is equivalent to

inf
γi≥0

{
γi

∣∣∣∣∣xHH(z, γi)x ≥ 0,∀|z| = 1

}
(13)

Next, let us define the following sets

Zpr , {x ∈ Cna | G̃r,i(z)x = 0, G̃p,i(z)x = 0},
Z , {x ∈ Cna | G̃r,i(z)x 6= 0, G̃p,i(z)x 6= 0},
Zr , {x ∈ Cna | G̃r,i(z)x = 0, G̃p,i(z)x 6= 0},
Zp , {x ∈ Cna | G̃r,i(z)x 6= 0, G̃p,i(z)x = 0}.

In the above definitions, each set corresponds to a combi-
nation of two logical conditions of G̃r,i(z)x and G̃p,i(z)x.
Therefore, the union of all four sets explores all possible
combinations of the two logical conditions, and thus their
union corresponds to the entire set Cna .

For any given z such that |z| = 1 , if x ∈ Zp, choosing
γ = 0 satisfies the constraint of (13). Similarly, if x ∈ Z ,

then γ = sup|z|=1,x∈Z
xH
{
G̃Tr,i(z̄)G̃r,i(z)

}
x

xH
{
G̃Tp,i(z̄)G̃p,i(z)

}
x

. This ratio is

well defined since the denominator cannot become zero
(since x ∈ Z), and the ratio is bounded since we have
assumed that the transfer functions G̃r,i(z) and G̃p,i(z) are
always stable (Assumption 2.1). Therefore, we have proven
that the value of (13) is bounded whenever x ∈ Zp ∪ Z .
We next begin by proving that the lemma statements are
sufficient for (13) to be bounded whenever x ∈ Zr ∪ Zpr.

Sufficiency: Assume that condition (1) of the lemma
statement holds. By definition of a zero ∀|z| = 1,@s 6= 0 ∈
Cna s.t. G̃r,i(z)s = 0. Thus it follows that Zr = Zpr = ∅.

Assume that condition (2) of the lemma statement holds.
Then by definition of a zero ∀|z| = 1,@s 6= 0 such that

G̃r,i(z)s = 0 and G̃p,i(z)s 6= 0. Thus it follows that Zr = ∅.
And if x ∈ Zpr, then picking γ = 0 simply satisfies the
constraint of (13). This concludes the proof on sufficiency.
Necessity: We prove by contradiction. Assume that there
exists a bounded γ which solves the optimization problem
(13). And we also assume that there exists a complex number
z1 on the unit circle which is a zero of the system Σ̃r,i
(including multiplicity and input direction) but are not zeros
of Σ̃p,i. By definition of a zero, it holds that ∃s 6= 0
such that G̃r,i(z1)s = 0, G̃p,i(z1)s 6= 0. Thus, Zrp 6= ∅
and becomes a part of the feasible set for x. Then, if
z = z1 and x = s, the constraint of (13) can be rewritten
as −sHG̃Tp,i(z̄1)G̃p,i(z1)s ≥ 0 which cannot hold since
G̃p,i(z1)s 6= 0. That is, the feasibility set of (13) is empty
which contradicts our assumption. In terms of the primal
problem (9), it means that there cannot exist a bound to its
optimal value. This concludes the proof.

PROOF OF Theorem 4.3
Before presenting the proof, an introduction to scenario-

based performance level estimation [13] is provided.

Scenario-based performance level estimation
Consider a function f(δ), δ ∈ ∆. Let ε ∈ (0, 1), then

the performance level estimation problem aims to estimate a
performance level γ∗ with a reliability 1− ε such that

γ∗ , inf
{
γ
∣∣∣ P∆{f(δ) ≤ γ} ≥ 1− ε.

}
(14)

The problem (14) is computationally intensive. The scenario-
based probability estimation algorithm (PEA), provides a
randomized approach to approximate the probability operator
P. This algorithm is described below.

1) Choose a confidence level β1 ∈ (0, 1), and an accuracy
level ε1 ∈ (0, 1).

2) Choose N1 such that (10) holds.
3) Extract N1 i.i.d. samples δ1, . . . , δN from ∆ and

evaluate f(δ1), . . . , f(δN1).
4) Then it holds that

P{|P∆{f(δ) ≤ γ} − P̂N | ≥ ε1} ≤ β1,

where P̂N , 1
N1

∑N1

i=1 I
(
f(δi) ≤ γ

)
. Thus, in this

step, an equivalent probability operator P̂N is formu-
lated in place of P∆ which was difficult to compute.

5) Using the approximation in (4), compute the solution
to (14) with an accuracy ε1 and a confidence β1 as

min

{
γ

∣∣∣∣∣ 1

N1

N1∑
i=1

I
(
f(δi) ≤ γ

)
≥ 1− ε

}
Proof: Let f(δ) , ||Σ̃(δ)||2`2e,yp←yr . If we substitute

this definition in (14), we obtain (7) which solves for γOA.
We use scenario based PEA to approximately compute γOA.
To this end, let us define β1 ∈ (0, 1) and ε1 ∈ (0, 1). Using
these definitions, from step (5) of PEA, we obtain γOA with
an accuracy ε1 and confidence β1 by solving

min
γ

{
γ

∣∣∣∣∣ 1

N1

N1∑
i=1

I
(
||Σ̃(δi)||2`2e,yp←yr ≤ γ

)
≥ 1− β

}



where N1 is given by (10). Using the result of Lemma 4.1,
||Σ̃(δi)||2`2e,yp←yr can be obtained by solving the convex
SDP (9). This concludes the proof.

PROOF OF Lemma 4.4

Proof: Necessity: Multiply both sides of the constraint
of (11) by N1. Then, for a bounded γOA to exist, we require∑N1

i=1 I (γi ≤ γOA, ∀ai ∈ `2e) ≥ N1 − N1β, should hold
with a bounded γOA. This is satisfied only if dN1(1 − β)e
values of the set {γi}i=1,...,N1

are bounded.
Sufficiency: Assume that the values of the set {γi}i=1,...,N1

,
for the first dN1(1− β)e realizations is bounded and is
unbounded for the other realizations. Let us choose γOA =
maxi=1,...,dN1(1−β)e γi. Substituting the definition of γi, γOA
in the constraint of (11) yields

1

N1


dN1(1−β)e∑

i=1

I (γi ≤ γOA) +

N1∑
i=dN1(1−β)e+1

I (γi ≤ γOA)


=

1

N1
{dN1(1− β)e+ 0} ≥ 1− β.

Thus, there exists a bounded γOA which satisfies the con-
straint of (11). This concludes the proof.
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