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Abstract— In this paper we investigate stability and inter-
action measures for interconnected systems that have been
produced by decomposing a large-scale linear system into a
set of lower order subsystems connected in feedback. We begin
by analyzing the requirements for asymptotic stability through
generalized dissipation inequalities and storage functions. Using
this insight we then describe various metrics based on a system’s
energy dissipation to determine how strongly the subsystems
interact with each other. From these metrics a decomposition
algorithm is described.

I. INTRODUCTION
The scalable analysis and design of complex dynamical

systems is a challenging area in systems and control theory.
In this work we describe a set of algorithms that can be used
to analyze the stability and characterize the interconnection
strength of Linear Time Invariant (LTI) dynamical systems.
The methods proposed are based on the notion of dynamical
system decomposition [1] and dissipation inequalities with
quadratic supply rates [2].

It is frequently the case that many systems have an
underlying network structure. If the network structure or con-
nection topology is known a priori then this information can
be used to help design scalable algorithms for interrogating
the system of interest. When the network structure is not
known it is important to impose an interconnection topology
(decomposition) in order to facilitate further analysis.

In this paper two issues are addressed. We begin by deriv-
ing stability criteria for interconnected LTI subsystems using
dissipation inequalities and quadratic supply rate functions
[2], [3]. The subsystems of interest may have been obtained
through a decomposition algorithm or they may have a
physical realization. In the sequel a method for decomposing
networks using the supply rate as a metric for interconnection
strength is described and illustrated on an RC network.

System decomposition was first suggested as a framework
for handling large-scale systems by Šiljak [4]. However the
framework did not provide any insight on how to produce the
system decomposition. In recent work [1], [5] an algorithmic
method for producing decompositions based on representing
the system as a graph and minimizing the worst case “energy
flow” between states was presented. In [6] an alternative
approach using Hankel-norm based lumping technique for
decomposition was presented.
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Using the framework in [1], to decompose a dynamical
system model, the system must first be represented as a graph
where each node is a state of the system and weighted edges
represent state interactions. The decomposition is realized by
applying a spectral graph partitioning algorithm [7], [8] to
the weighted graph. Here we extend this idea to the case
where nodes may represent subsystems and edges represent
the strength of interaction between subsystems as determined
by a given supply rate function. We investigate the physical
interpretation of a class of supply rates and conclude by
presenting a clustering based decomposition algorithm.

The paper is organized as follows: In Section II we
introduce the necessary background material. Section III uses
quadratic supply rate functions to derive stability criteria us-
ing passivity, input strict passivity and finite-gain arguments.
In Section IV various edge weight metrics are described and
a decomposition algorithm presented. A numerical example
is given in Section V and the paper is concluded in Section
VI.

II. PRELIMINARIES

A. Notation

Rn denotes the n-dimensional Euclidean space, Rn×m

denotes the set of n × m real matrices. If M ∈ Rn×n and
M = M⊤ then M > 0, M ≥ 0 denote that M is positive
definite, positive semidefinte respectively. The maximum
singular value of M is denoted by σ̄(M). Given k matrices
M1, . . . ,Mk, diag(M1, . . . ,Mk) denotes the concatenated
block diagonal matrix.

B. Storage Functions and Quadratic Supply

We consider dissipation inequalities containing quadratic
nonnegative storage functions, quadratic supply rates, and the
notion of (Q,S,R) dissipativity described in [3]. Consider
the LTI system

d

dt
x(t) , ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t), (1)

where x(t) ∈ Rn, u(t) ∈ Rp, and y(t) ∈ Rm are the state,
input and output vectors, respectively. For simplicity we will
omit the time argument and refer to the former as simply x,
u, and y.

System (1) is said to be dissipative with respect to the
supply rate w(u, y) if there exists a continuously differen-
tiable storage function V : Rn → R satisfying the following
dissipation inequality

V̇ (x) ≤ w(u, y), (2)



with V (0) = 0 and V (x) ≥ 0 for all x ̸= 0. We are interested
in quadratic supply rate functions of the form

w(u, y) = y⊤Qy + 2u⊤Sy + u⊤Ru, (3)

with Q = Q⊤ and R = R⊤, where u and y form input output
pairs (u, y) and Q,S and R are of appropriate dimension.
The LTI system (1) is said to be dissipative if the following
holds

V (x) = x⊤Px > 0 for all x ̸= 0

V̇ (x) = x⊤(A⊤P + PA)x+ u⊤B⊤Px+ x⊤PBu

≤ w(u, y)

where P = P⊤. Dissipativity can be checked by solving the
following LMI[

A⊤P + PA− C⊤QC PB − C⊤S
B⊤P − S⊤C −R

]
≤ 0, (4)

for P > 0.

C. Stability of Interconnected Dissipative Systems

We study the interconnection of N subsystems, Σi, where

Σi

{
ẋi = Aixi +Biui

yi = Cixi,
(5)

and the interconnection between subsystems is

ui = −
N∑
j=1

Hijyj . (6)

Defining x = [x⊤
1 · · · x⊤

N ]⊤, u = [u⊤
1 · · · u⊤

N ]⊤, and y =
[y⊤1 · · · y⊤N ]⊤, the interconnection may be written as u =
−Hy and the global system dynamics are described by

ẋ = Ax−BHCx, y = Cx, (7)

where A = diag(A1, · · · , AN ), B = diag(B1, · · · , BN ),
and C = diag(C1, · · · , CN ).

Assumption 1: Each subsystem Σi is dissipative with re-
spect to a given supply rate (Qi, Si, Ri).
Given the previous assumption, for each subsystem there
exists a symmetric matrix Pi > 0 such that the dissipa-
tion inequality (2) holds with the (Qi, Si, Ri) supply rate.
Therefore the inequality

N∑
i=1

V̇i(xi) ≤
N∑
i=1

wi(ui, yi) (8)

holds regardless of the interconnection.
Remark 1: Defining P = diag(P1, · · · , PN ) and

V (x) = x⊤Px, we have V̇ (x) = x⊤(A⊤P +
PA)x+ u⊤B⊤Px+ x⊤PBu =

∑N
i=1 V̇i(xi). Furthermore,

w(u, y) =
∑N

i=1 wi(ui, yi) is given by (3) with Q =
diag(Q1, · · · , QN ), S = diag(S1, · · · , SN ), and R =
diag(R1, · · · , RN ).
Inequality (8) may then be rewritten as

N∑
i=1

V̇i(xi) ≤ y⊤Q̂y, (9)

Fig. 1. Top: Graph of interconnected subsystems Σ1, Σ2. Boundary nodes
V12
b are blue, dashed edges, E12

c , connect the subsystems via the boundary
nodes. Bottom: Two nodes in an RC network, edge ek ∈ E12

c corresponds
to resistor R̂1 and the vertices correspond to the resistor and capacitors
connected in parallel.

where Q̂ = Q − S⊤H − H⊤S + H⊤RH . A sufficient
condition for stability of the global interconnected system
follows from (9):

Lemma 1 ( [3]): Assume each system Σi is observable.
The global interconnected system is asymptotically stable if
Q̂ is negative definite. Furthermore, V (x) =

∑N
i=1 Vi(xi) =

x⊤Px is a Lyapunov function for the global system, with
P = diag(P1, · · · , PN ).

D. Algebraic Graph Theory

Consider an undirected weighted graph G(V, E ,Z) where
V = {v1, · · · vN} is the set of N vertices or nodes,
E = {e1, . . . , eM} ⊆ V × V is the edge-set and Z =
{z1, · · · , zM} where zj > 0 is the weight of edge j.
Associated with G is a symmetric weighted adjacency matrix
A(G) ∈ RN×N where [A(G)]ij > 0 if there exists an edge
connecting vi to vj . The weighted N ×N Laplacian matrix
is defined by L(G) = diag(A(G)1) − A(G). For undirected
graphs L(G) ≥ 0 and the number of zero eigenvalues is
equal to the number of connected components in the graph.

The incidence matrix, C(G) ∈ RN×M of an undi-
rected graph is defined by assigning an arbitrary di-
rection to each ei ∈ E and setting [C(G)]ij =
1 if ei enters vj ,−1 if ei leaves vj and 0 otherwise. The
weighted Laplacian can then be equivalently defined by
L(G) = C(G)W (G)C(G)⊤ where W(G) ∈ RM×M is a
diagonal matrix and [W(G)]ii = zi with zi ∈ Z . Given a
graph G(V, E ,Z), consider a subset of the vertices Vj ⊂ V
we call the graph Gj = G/Vj an induced subgraph of G.

Assume that we have a graph G(V, E ,Z) which has been
partitioned such that V = V1

∪
V2 and V1

∩
V2 = ∅. If there

exists an edge ek = (vi, vj) ∈ E such that vi ∈ V1 and
vi ∈ V2 (or vice-versa) then vi and vj are called boundary
nodes and belong to the set V12

b . The set of edges that connect
boundary nodes in V1,V2 is given by E12

c .
When it is clear from the context we will omit the graph

argument ands refer to the adjacency, incidence, weighting
and Laplacian matrices by A, C,W and L respectively. For
a thorough overview of algebraic graph theory see [9].

E. Illustrative Example

The ideas presented above are now illustrated through a re-
sistor capacitor network example. The network is represented



by the undirected weighted graph G(V, E ,Z). In this setting,
each vertex vi ∈ V corresponds to a capacitor Ci in parallel
with a resistor Ri connected to ground and each edge ek ∈ E
represents a resistor R̂k with zk = 1/R̂k ∈ Z connecting the
free terminals of two vertices. This is illustrated in Figure 1.
Let all capacitors have unit capacitance and denote xi ∈ R
as the voltage in capacitor i and ui ∈ R the current entering
node i. Each node is modeled as by the first-order system

ẋi = −gixi + ui, yi = xi, (10)

where gi = 1/Ri. Defining G = diag(g1, · · · , gN ) the
dynamics of the global network are given by

ẋ = −(L+G)x, y = x. (11)

Let Σj be a subnetwork described by the induced graph
Gj(Vj , Ej ,Zj). The dynamics of Σj are described by

Σj

{
ẋj = −(Lj +Gj)xj +Bjuj

yj = B⊤
j xj

(12)

where uj represents the input current to Σj from the rest of
the network that enters through the boundary nodes whose
dynamics are described by the matrix Bj . To construct Bj :
i) Define the following sets Vi,Vj , Ei, Ej ,Vij

b and E ij
c . ii)

From these sets construct an incidence matrix corresponding
to Vij

b , E ij
c such that all edges enter Vj , iii) Bj corresponds

to the part of the incidence matrix with nodes belonging to
Vj .

Defining the storage function for this system as Vj(xj) =
1
2x

⊤
j xj we have V̇j(xj) = −x⊤

j Ljxj − x⊤
j Gjxj + u⊤

j yj ,
where the power dissipated on the internal edge resistors,
the power dissipated on the node resistors, and the input
power to Σj correspond to −x⊤

j Ljxj , −x⊤
j Gjxj , and u⊤

j yj ,
respectively.

Given V̇j(xj), two interesting supply rate functions for
which the system is dissipative can be immediately identified.

Observation 1: If Σj is stable, then Σj is (0, I, 0)-
dissipative.
Furthermore, consider x⊤

j Gjxj = x⊤
j G̃jxj+y⊤j G

b
jyj , where

the first term is the power dissipated in the internal node
resistors, while the second term corresponds to power dissi-
pated on the boundary node resistors.

Observation 2: If Li + G̃j is positive semidefinite, then
Σj is (−Gb

j , I, 0)-dissipative.

III. STABILITY ANALYSIS

The goal of system decomposition is to provide tractable
means of analyzing dynamical systems that have a large state
dimension. The idea is to take an LTI system model with high
state dimension and decompose it into the form of (5) where
composite methods can then be used to infer stability of the
original system.

Here we describe some stability results based on com-
posite Storage functions. We assume that a decomposition
algorithm has already been applied to obtain the subsystems.
In Section IV we present a clustering algorithm for decom-
position.

Consider the LTI system Σ:

Σ

{
ẋ = Ax, x(0) = x0,
y = x

(13)

with x ∈ Rn. Now assume that it has been decomposed into
two subsystems connected in feedback

Σ1

 ẋ1 = A11x1 + u1

u1 = A12x2

y1 = x1

,Σ2

 ẋ2 = A22x2 + u2

u2 = A21x1

y2 = x2

(14)
where the state vector has been permuted such that x =
[x⊤

1 , x
⊤
2 ]

⊤ and x1 ∈ Rn1 , x2 ∈ Rn2 , n1 + n2 = n and no
state belongs to multiple subsystems.

Remark 2: Assume system Σ has been decomposed into
Σ1 and Σ2 which are dissipative w.r.t. the quadratic supply
rates w1(u1, y1) and w2(u2, y2) of the form (3) respectively.
If w1(u1, y1) + w2(u2, y2) < 0 for all input output pairs
then the sum of the Storage functions V1(x1) + V2(x2) is a
Lyapunov function that proves that the equilibrium point of
(13) is asymptotically stable. This is a direct application of
Lemma 1.
Note that this and all further results generalize to the case
where Σ is decomposed into multiple subsystems, for the
sake of clarity we focus on the case of two subsystems.

If we assume a generic interconnection structure for
Σ1,Σ2 of the form[

u1

u2

]
=

[
H11 H12

H21 H22

] [
y1
y2

]
(15)

then the right hand side of V̇1(x1)+ V̇2(x2) ≤ w1(u1, y1)+
w2(u2, y2) with (ui, yi) obtained from the decomposition
and interconnection matrix (15) is given by (16) on the next
page. By appropriate choice of the Q,S,R matrices, the
supply functions (3) can represent passivity, finite-gain and
dissipativity, each of which alters the structure of (16). The
remainder of this section examines each of these cases in turn
and provides stability tests for (13) based on its decomposed
subsystems (14).

A. Passivity

An LTI system of the form (5) is said to be passive
if it is dissipative with respect to supply rate (3) with
(Qi, Si, Ri) = (0, I, 0) and LMI (4) is feasible. Assume that
Σ has been decomposed into Σ1,Σ2 (which is equivalent
to (5)). Substituting the appropriate matrices into the supply
rate functions, we see from Equation (16) that we require[

H⊤
11S1 + S⊤

1 H11 S⊤
1 H12 +H⊤

21S2

⋆ H⊤
22S2 + S⊤

2 H22

]
< 0, (17)

where from (14) we have that

H =

[
0 A12

A21 0

]
.

With this interconnection structure and system decomposi-
tion the diagonal block entries in (17) are zero and the off
diagonal blocks are given by A12+A⊤

21 and its transposition.
In this form (17) cannot be negative definite as its eigenvalues



[
x1

x2

]⊤ 
(H⊤

11R1H11 +H⊤
11S1 + S⊤

1 H11+ (H⊤
11R1H12 + S⊤

1 H12+
+H⊤

21R2H21 +Q1) +H⊤
21S2 +H⊤

21R2H22)
⋆ (H⊤

22R2H22 +H⊤
22S2 + S⊤

2 H22+
+H⊤

12R1H12 +Q2)

[
x1

x2

]
(16)

will be real and symmetric about the imaginary axis. This
problem can be alleviated if we consider a slight modification
to the decomposition described by (14) by imposing a
further decomposition on the drift matrices Aii and include
a feedback term. The new decomposition for Σ1 is

Σ̂1

 ẋ1 = ϵ1A11x1 + u1

u1 = A12x2 + δ1A11x1

y1 = x1

(18)

where ϵ1+δ1 = 1 and we assume all matrices are of compat-
ible dimension. In the same manner Σ̂2 can be constructed.
LMI (17) is then replaced by[

δ1(A11 +A⊤
11) A12 +A⊤

21

⋆ δ2(A22 +A⊤
22)

]
< 0 (19)

When Σ̂1, Σ̂2 are dissipative with respect to (0, I, 0) and LMI
(19) is feasible the original system (13) is stable as verified
by the Lyapunov function V (x) = V1(x1) + V2(x2). An
alternative approach is to select ϵi, δi arbitrarily (ensuring
ϵ1 + δ1 = 1) and using the modified decomposition Σ̂
solve LMI (17) where the decision variables are the diagonal
matrices Si > 0. Such an approach is possible because any
system that is dissipative with respect to (0, I, 0) is also
dissipative with respect to any (0, X, 0) supply rate with
X > 0 diagonal.

B. Finite Gain

For LTI systems the L2 gain from input to output of a
system in the form of (5) can be calculated by solving:

min γi

s.t.
[

A⊤
i Pi + PiAi + C⊤

i Ci PiBi

B⊤
i Pi −γ2

i I

]
≤ 0 (20)

Pi > 0, γi > 0.

The L2 → L2 gain is then given by γi [10]. For two
systems connected in feedback if γ1γ2 < 1 then the feedback
connection is stable [11]. A generalization of the small gain
theorem for networks is given in [12], [13]. Following from
LMI (20) it can be seen that the supply rate functions
associated with finite gain are given by (−I, 0, γ2

i I) for
i = 1, 2.

Substituting the appropriate Q,S,R matrices and intercon-
nections into (16) gives the following stability requirement:[

γ2
2A

⊤
21A21 0
0 γ2

1A
⊤
12A12

]
−

[
I 0
0 I

]
< 0

⇔ σ̄

([
γ2I 0
0 γ1I

] [
A21 0
0 A12

])
< 1 (21)

The stability condition (21) is stated formally below.

Lemma 2: Assume system (13) has been decomposed
into the subsystems given in (14). Further assume that the
subsystems are dissipative with respect to Si = 0, Qi = −I
and Ri = γ2

i I where γi denotes the L2-norm of subsystem
i. Then if max {γ2σ̄(A21), γ1σ̄(A12)} < 1 system (13) is
asymptotically stable as verified by the Lyapunov function
V1(x1) + V2(x2).

Lemma 2 and Equation (21) provide a nominal stability
test for the decomposed subsystems. What would be desir-
able it to determine the maximum L2 gains (i.e. γi’s) such
that (21) holds. Such a characterization would provide a
robustness measure for the decomposed system. From the
equivalence relation in (21) the maximum achievable γ’s
denoted by γ̂ that satisfy the stability requirement in Lemma
2 are given by γ̂1 = σ̄(A12)

−1 and γ̂2 = σ̄(A21)
−1.

If we consider more generic supply rates with
(−κI, 0, κγ2I), κ > 0 instead of (−I, 0, γ2I) then it
is possible to strengthen Lemma 2. Observe that if a system
is dissipative w.r.t. (−I, 0, γ2I) then it is also dissipative
w.r.t. (−κI, 0, κγ2I) for any κ > 0.

Lemma 3: If there exists a scalar κ > 0 such that
Σ1 and Σ2 are dissipative w.r.t. (−κI, 0, κγ2

1I) and
(−κI, 0, κγ2

2I) respectively then system (13) is stable if
max

{
κγ1σ̄(A21), κ

−1γ2σ̄(A12)
}
< 1.

Note that when σ̄(A21) = σ̄(A12), Lemma 3 is equivalent
to the small gain condition.

C. Input Strong Passivity

A system of the form (5) is said to be input strongly
passive if

∫ T

0
u⊤y − ηu⊤u dt ≥ 0 for all T ≥ 0, x(0) = 0

with a dissipation rate η < 0 [10]. The maximum dissipation
achievable is the largest η such that the integral inequality
above holds, this can be computed by solving the LMI

max η

s.t.
[

A⊤P + PA PB − C⊤

B⊤P − C 2ηI

]
< 0

P > 0, η < 0. (22)

Setting τ = −2η we obtain a Q,S,R supply rate of
(0, I,−τI). Substituting the appropriate supply rate func-
tions (0, I,−τiI) corresponding to Σ1 and Σ2 into Equation
(16) the requirement for V1(x1) + V2(x2) to be a composite
Lyapunov function for (13) becomes[

τ2A
⊤
21A21 A12 +A⊤

21

A⊤
12 +A21 τ1A

⊤
12A12

]
< 0 (23)

when H11 = H22 = 0. The LMI (23) is never feasible as
the elements on the diagonal will always be positive definite.
However if we allow for a feedback term in each subsystem



by modifying the decomposition according to (18) then it is
possible to make (16) negative definite. The modified LMI
is easily obtained from (16) but is omitted for lack of space.

Although (23) can never be satisfied it does provide useful
insight into the decomposition problem. Factoring (23) into[

A⊤
21 0
0 A⊤

12

] [
τ2 0
0 τ1

] [
A21 0
0 A12

]
+

[
0 Γ
⋆ 0

]
< 0

where Γ = A12 + A⊤
21, we see that a heuristic that could

be incorporated into a decomposition scheme that aims
to provide a composite Lyapunov function for (13) with
dissipative subsystems is

min
A21,A12

σ̄

([ √
τ2 0
0

√
τ1

] [
A21 0
0 A12

])
,

where A12, A21 are permuted blocks of A. The idea of syn-
thesizing a system decomposition will be discussed further
in the following sections.

IV. DECOMPOSITION

In this section we study the decomposition of intercon-
nected dissipative subsystems. Consider a subsystem Σi

described by (5) with a nonnegative storage function Vi(xi)
satisfying (4). Such storage is a scalar measure of the
subsystem’s state, which could be thought of as the amount
of “abstract energy” stored by the subsystem in its internal
state xi.

Assuming Σi to be dissipative with respect to a given
supply rate, a dissipation inequality indicates that the supply
rate upper bounds the rate of change of the storage and thus,
indirectly, the change of the subsystem’s state. By estimating
various forms of supply interchanges between subsystems we
can evaluate which subsystems interact most strongly with
each other using the supply rate upperbound as an indication
of the worst case (strongest) interaction.

A. Undirected Supply Measure

With the interconnection of subsystems Σ1 and Σ2 and
when Assumption 1 holds, having the total supply rate given
by w1(u1, y1)+w2(u2, y2) = −y⊤Q̂y ≈ 0 implies that, over
the trajectories of the global system, the interconnections
H supply to the subsystems is small. Hence w1(u1, y1) +
w2(u2, y2) could be seen as a measure of undirected inter-
action, indicating how relevant the interconnection is to the
global system dynamics. Additionally, from Lemma 1 having
w1(·) + w2(·) < 0 implies stability of the global system.

Remark 3: Σ1 and Σ2 could be connected to several other
subsystems. For the previous discussion to hold, one should
constrain the supply rate to be separable along the different
edges.
The above remark imposes the following constraint:

Assumption 2: Define Ec ⊂ E as the set of edges intercon-
necting K subsystems. For each subsystem Σi we assume
the supply rate is separable along the edges, which implies
wi(ui, yi) =

∑
ek∈Ec

wi
ek
(ui, yi).

Remark 4: Define E ij
c ⊆ Ec as the set of

edges connecting Σi and Σj . The measure for the

undirected interaction between Σi and Σj is then∑
ek∈Eij

c

[
wi

ek
(ui, yi) + wj

ek
(uj , yj)

]
.

Take the RC-network described previously. The metric
discussed in this section corresponds to the electric energy
dissipated in the interconnecting resistors for Observation 1
and to the electric energy dissipated on the interconnecting
and boundary resistors for Observation 2.

B. Directed Supply Measure

Remark 5: A directed supply measure can also be derived
using similar arguments as above, resulting in w1(u1, y1)
being a measure for directed interaction from Σ2 and the
interconnection to Σ1, see [?].

NEED TO ADD REFERENCE TO THE TECHNICAL
REPORT.

C. Computing Edge Weights for Stability

We now discuss how the previously described measures of
interaction, which are time varying functions of the system
state, can be condensed to a representative static value for
use in a decomposition algorithm such as the one in [5].
Ideally we would like to find “good” decompositions that
satisfy the stability criteria defined in Section III.

Consider the global interconnected subsystem (7), with no
assumption of stability. Define for each edge ei the supply
rate function

wei(u, y) = y⊤Qeiy+2u⊤Seiy+u⊤Reiu = y⊤Q̂eiy (24)

where u has been eliminated using the interconnection
u = −Hy and Q̂ei symmetric, corresponding to either the
directed or the undirected interaction measure. For instance,
taking the RC-network in Figure 1 and considering the
undirected interaction measure for the supply rate from
Observation 1, wi(ui, yi) = u⊤

i yi, we have

we1(y1, y2) =

[
y1
y2

]⊤ [
1

R̂1
− 1

R̂1

− 1

R̂1

1

R̂1

] [
y1
y2

]
=

(y1 − y2)
2

R̂1

,

which corresponds to the electric power dissipated by the
resistor R̂1.

As mentioned in Section III and IV-A, the undirected
interaction measure is also related to stability. In fact given
a cut Ec and Assumption 2, if the subsystems Σ1 and Σ2 are
dissipative with nonnegative storage functions characterized
by P1 and P2 respectively, then we have

x⊤ [
(A−BHC)⊤P + P (A−BHC)

]
x ≤ y⊤(

∑
ek∈Ec

Q̂ek)y,

(25)
with P = diag(P1, P2), from which it follows that the global
system is stable if y⊤(

∑
ek∈Ec

Q̂ek)y < 0 (see Lemma 1).
As such a cut is not known a priori, we provide heuristics

to compute appropriate edge weights. Let yek be the output
of the two nodes incident to the edge ek and define Q̃ek

such that y⊤Q̂eky = y⊤ekQ̃ekyek . For a suitable permutation
yielding Πy = [y⊤ek y

⊤
E/ek ]

⊤ we have Q̃ek as the first diagonal
block of ΠQ̂ekΠ

−1. For instance, in the RC-network in
Figure 1 we have Q̃ek = Q̂ek . A sufficient condition for



Q̂Ec =
∑

ek∈Ec
Q̂ek < 0 is to require Q̃ek < 0 ∀ek ∈ E .

Furthermore, note that (25) may be thought as the inclusion
of an ellipsoid, −x⊤ [

(A−BHC)⊤P + P (A−BHC)
]
x,

by another ellipsoid −x⊤C⊤(
∑

ek∈Ec
Q̂ek)Cx, where the

latter corresponds to a sum of ellipsoids. Since the former
ellipsoid is only known after the cut, one would like the
latter ellipsoid to be as large as possible, as this would
increase the set of matrices P1 and P2 for which such
inclusion holds. Therefore, assuming Q̂Ec < 0 and denoting
PEc = {y : − y⊤Q̂Ecy ≤ 1} as the ellipsoid associated with
a given cut Ec, a suitable partitioning algorithm would solve
maxEc vol(PEc) where J(Ec) = vol(PEc) is the utility of
a cut Ec. Combining these two features, and denoting Pek

as the ellipsoid defined by Q̃ek , the edge weights J(ek) =
vol(P∗

ek
) may be computed by solving

max
Qek

<0,Rek
=R⊤

ek
,Sek

vol(Pek)

which is not a convex problem in Qek , Sek , and Rek . The
partitioning algorithm would then choose a set of edges
forming a cut Ec such that

∑
ek∈Ec

J(ek) is maximized.
The volume of an ellipsoid Pek is proportional to√
det(−Q̃−1

ek ), hence the previous problem will yield a
solution such that det(−Q̃ek) is minimized, which implies
y⊤ekQ̃ekyek ≈ 0. Therefore, since det(−Q̃ek) is the product
of the eigenvalues of −Q̃ek , we can instead consider the
convex problem

min
Qek

<0,Rek
=R⊤

ek
,Sek

λmax(−Q̃ek)

which is related to maximizing the diameter of Pek , and take
J(ek) = 1/λmax(−Q̃∗

ek
). Note that this also relates to find-

ing weakly interacting subsystems based on the undirected
measure. Therefore, large values of J(ek) indicate that this
is a good edge to cut in a decomposition algorithm and will
also help in verifying stability using the criteria in Section III.

D. Computing Edge Weights for Weakly Connected Systems

Assume now the global system is stable and we want to
decompose it into subsystems that interact weakly over time,
for example to facilitate the design of distributed controllers.
Consider the system (7) and define for each edge the supply
rate function (24). Since there are no external inputs, wei is
a function of the initial condition x0 and time. Hence one
needs to evaluate these functions to compute a static value
measuring the interactions over time. Instead the total supply
defined as Wei(x0) ,

∫∞
0

wei(t) dt is used and the edge
weight is computed by evaluating Wei(x0) for the relevant
initial conditions. The following result allows us to compute
Wei(x0) for a given initial condition:

Proposition 1: Assuming the global system (7) is stable,
for a given initial condition x0 we have Wei(x0) = x⊤

0 Teix0,
where Tei is the Gramian matrix satisfying the Lyapunov
equation (A−BHC)⊤Tei+Tei(A−BHC)+C⊤Q̂eiC = 0.

Proof: We have Wei(x0) =
∫∞
0

y(t)⊤Q̂eiy(t) dt =
x⊤
0 Tx0, where Ā = A − BHC and T =∫∞
0

e(Ā
⊤t)C⊤Q̂eiCe(Āt) dt. Note that the expression

for T resembles the well-known observability Gramian.
The rest of the proof follows the characterization of the
observability Gramian found in [14].
Note that for finite time horizons Wei(x0) can be computed
by means of simulation as an alternative to solving the
Gramian.

Recalling the decomposition’s objective, a partitioning
algorithm would select a set of edges Ec forming a cut
such that

∑
ei∈Ec

Wei(x0) is close to zero, thus solv-
ing minEc

∣∣∑
ei∈Ec

Wei(x0)
∣∣ where we define J(Ec) =

|
∑

ei∈Ec
Wei(x0)| as the cost of a cut for a given initial

condition. We now analyze the evaluation of Wei(x0) for
two different sets of initial conditions.

1) Worst-case initial condition: For a given cut Ec,
the worst-case initial condition is the one maximizing
|
∑

ei∈Ec
Wei(x0)| and the cut cost would be given by

J(Ec) = max∥x0∥=1 |
∑

ei∈Ec
Wei(x0)|. Since we do not

know the set Ec a priori, the edge weights are also unknown,
which would require a combinatorial approach to solve
this partitioning algorithm. A possible relaxation decou-
pling the edge weights from the cut can be made based
on the following inequality maxx0

|
∑

ei∈Ec
Wei(x0)| ≤∑

ei∈Ec
maxx0i

|Wei(x0i)|. Note that in the right hand side
the initial condition x0i is dependent only the edge ei.
Therefore, by defining the new cost function J̄(Ec) =∑

ei∈Ec
maxx0i

|Wei(x0i)|, we obtain weights that only de-
pend on each particular edge, J̄(ei) = maxx0i

|Wei(x0i)|,
and an upper bound on the edge cost J(Ec). The weight
J̄(ei) can be computed by solving max∥x0∥=1 |x⊤

0 Teix0|
where Tei is given by Proposition 1.

Remark 6: Since C⊤Q̂eiC is symmetric, T is also sym-
metric and thus we have maxx0

|x⊤
0 Tx0| = maxi |λi(T )| =

|λ∗(T )|, where {λi(T )} are the eigenvalues of T . Computing
the eigenvalue value decomposition of T , we conclude x∗

0 is
given by the eigenvector associated with λ∗(T ).

2) Gaussian initial condition: We now consider a stochas-
tic description of the initial condition for the global system.
Let x0 ∼ N (x̄,Ω). From Proposition 1 it follows that the to-
tal supply Wei(x0) = x⊤

0 Teix0 is a random variable. Hence
the cost of a given cut Ec is J(Ec) = |Ex0 [

∑
ei∈Ec

Wei(x0)]|.
Using the triangle inequality we obtain the following upper
bound of the cut cost J(Ec) ≤

∑
ei∈Ec

|Ex0 [Wei(x0)]| =

J̃(Ec). Hence we assign J̃(ei) = |Ex0 [x
⊤
0 Teix0]| as the

weight for ei, which may be computed using the following
result:

Proposition 2: Given x0 ∼ N (x̄,Ω) we have
Ex0 [x

⊤
0 Teix0] = x̄⊤Tei x̄+ trace(TeiΩ).

Proof: Direct application of Lemma 3.3 in [15].

E. Decomposition Methods

Given the aforementioned methods to compute static edge
weights, a system decomposition algorithm based on the
directed and undirected interaction measures is described.

The directed interaction measure provides two weights,
one for each edge direction. Hence it is suitable for clustering
algorithms where a given set of nodes V0 is of interest and
we want to find Vi such that V = Vi∪Vj , V0 ⊆ Vi, and Σi is



not affected much by Σj . A possible algorithm to accomplish
this tasks proceeds as follows:

1) Set Vi = V0 and define Ec as the edge set connecting
nodes from Vj to Vi;

2) Compute the directed weight from Vj to Vi for each
edge ek ∈ Ec;

3) Pick the set of nodes from Vj that have the largest
directed weight, V̄j , and set V+

i = Vi + V̄j ;
4) Set Vi = V+

i , define the new cut set Ec, and repeat
from 2 until the interaction measure is below the
tolerance level.

The undirected interaction measure provides a single weight,
Wek which can be readily incorporated into the framework
presented in [5].

V. EXAMPLE

Consider an RC-network described by the graph in Fig-
ure 1 with dynamics given by (11). Let each node have unit
capacitance and resistance and let [W]ii = 1/R̂i = 0.1∀ei ∈
E12
c and [W]ii = 1 ∀ei ̸∈ E12

c . For each node vi, consider
the supply rate defined in Observation 1, wi(ui, yi) = u⊤

i yi.
Recalling that ui is the input current to node i and yi = xi is
the voltage at the corresponding capacitor, from Kirchhoff’s
Current Law we conclude that the supply rate is separable
along the edges connected to vi, since wi(ui, yi) is the sum
of the input power from each edge. Hence Assumption 2
holds. Following the steps in Section IV.E for the undirected
measure and the worst-case initial condition approach we
compute the edge weights, which correspond to the electric
power dissipated at each edge resistor. For the dashed edges
we obtain the weights
J̄(ei ∈ E12

c ) = [0.0579, 0.0625, 0.0693, 0.0623]⊤, while
mini J̄(ei ̸∈ E12

c ) = 0.4016. Applying a spectral graph
decomposition algorithm with these edge weights we obtain
E12
c as the cut set, as shown in Figure 1.
Considering instead the undirected measure with Gaussian

initial condition x0 ∼ N (0, I), we obtain the following
weights J̃(ei ∈ E12

c ) = [0.0636, 0.0670, 0.0727, 0.0671]⊤,
and mini J̃(ei ̸∈ E12

c ) = 0.4278. As before, the cut set
obtained after spectral decomposition is E12

c .

VI. CONCLUSIONS

It has been shown how the supply rates of dissipative
dynamical systems can be used as a metric for measuring
subsystem interaction strength in a networked system. Fur-
thermore, based upon this metric an algorithm for decompos-
ing a networked system was presented and illustrated on a 20
node RC circuit. We also provided stability criteria for the
decomposed system based on passivity and bounded gain.
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