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Abstract— This tutorial provides a high-level introduction to
novel control-theoretic approaches for the security and privacy
of cyber-physical systems (CPS). It takes a risk-based approach
to the problem and develops a model framework that allows
us to introduce and relate many of the recent contributions
to the area. In particular, we explore the concept of risk
in the context of CPS under cyber-attacks, paying special
attention to the characterization of attack scenarios and to
the interpretation of impact and likelihood for CPS. The risk
management framework is then used to give an overview of
and map different contributions in the area to three core parts
of the framework: attack scenario description, quantification of
impact and likelihood, and mitigation strategies. The overview
is by no means complete, but it illustrates the breadth of
the problems considered and the control-theoretic solutions
proposed so far.

I. INTRODUCTION

Cyber-physical systems (CPS) represent a class of net-
worked control systems with vast and promising applications,
such as smart cities, distributed sensing and control based on
Internet-of-Things (IoT) devices, or ground-breaking trans-
portation systems based on fleets of cooperative and au-
tonomous vehicles. CPS also include more traditional large-
scale control infrastructures found in the process control
and power industries. These systems all provide outstanding
functionalities and positively influence our life and society.
However, such positive outcomes may be hindered by novel
threats to the safety of CPS, such as malicious cyber-attacks
that may negatively affect the physical domain. Indeed,
the past years have witnessed some dramatic cyber-attacks
against CPS, with significant media coverage. Several mal-
wares dedicated to attacks against CPS have been discovered,
with names such as Stuxnet, Black Energy, Industoyer, and
Triton1.

For these reasons, there has been a surge in the interest for
security and privacy in control systems during the past ten
years. The IEEE Control Systems Magazine special issue [1]
gave an overview of some of the early work in the area. Four
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years have passed since the special issue, and in this tutorial
introduction we aim to also introduce some of the more
recent work. However, before turning to the CPS security
and privacy problems, we should remind ourselves of the
basic security properties analyzed in IT systems.

Information is a key asset in knowledge-driven societies,
which require a reliable and continuous availability of data
and services. Redundant and fault-tolerant architectures are
thus required to build IT systems resilient to faults and distur-
bances [2]. Additionally, IT systems must also be defended
against malicious adversaries whose aim is in disrupting or
gaining access to the information flow.

Three fundamental properties of information and services
in IT systems are mentioned in the computer security liter-
ature [3] using the acronym CIA: confidentiality, integrity,
and availability. Confidentiality concerns the concealment
of data, ensuring it remains known to the authorized par-
ties alone. Integrity relates to the trustworthiness of data,
meaning there is no unauthorized change to the information
between the source and destination. Availability considers
the timely access to information or system functionalities.

These three properties can be violated through disclosure,
deception, and denial-of-service attacks, respectively. While
in IT systems, the impact of such cyber-attacks remains in
the cyber-realm, they may cause dire consequences to the
physical system in networked control systems. This will be
further explored in our tutorial.

Outline: The paper is structured as follows. In Sec-
tion II, an overview of the risk management framework is
given, focusing on some of its core elements: attack scenario
description, risk analysis, and risk treatment. This framework
serves to contextualize the overall formulation of cyber-
security problems, as well as different analysis design ques-
tions to assess and improve cyber-security. The following
three sections look deeper into each core element. Classical
cyber-attack scenarios for CPS are succinctly described in
Section III, along with the respective adversarial capabilities.
Section IV discusses recent work addressing the evaluation of
risk (i.e., the impact and likelihood of each attack scenario).
Recent approaches to reduce risk of specific cyber-attacks
are summarized in Section V. The paper concludes with final
remarks and future research directions in Section VI.

II. RISK MANAGEMENT FRAMEWORK

The risk management framework [3]–[5] is a common
methodology to enhance a system’s cyber-security. The main
objective of risk management is to identify, assess, and
minimize the risk of threats.
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Since risk may vary over time, with the appearance of new
threat scenarios and the aging of the system, risk must be
continuously managed to ensure security. Such a requirement
leads to the cyclic execution of the risk management process,
which includes, among others, two core stages: risk analysis
and risk mitigation.

A. The Concept of Risk

The classical notion of risk is defined as follows [6].
Consider a given set of threat scenarios, the corresponding
impact to the system, and the likelihood of such scenar-
ios. The risk of the system corresponding to the set of
threat scenarios is denoted as the set of triplets Risk ,
{(Scenario, Impact, Likelihood)}.

Although somewhat implicit in the definition, risk is not a
property of a system. Instead, it will depend on the specific
attack scenarios under which the system is examined. For
instance, different scenarios could be considered depending
on elements such as: what devices are compromised, how
knowledgeable about the system the adversary is, what
type of adversary is attacking the system, what security
mechanisms are in place, among others. For each specific
attack scenario, the impact of the attack and the likelihood of
the attack being successfully implemented can be assessed.

In information security risk management [5], impact typ-
ically relates to the damage that the attack can have on
the information (cyber) system itself, such as the disclosure
of sensitive information, or denying service from critical
functionalities. In CPS however, attacks on the digital com-
ponents have damage that extends beyond the cyber-realm,
affecting also the physical side of the system. Therefore,
one of the new aspects of security of CPS is related to
the assessment of the impact of cyber-attacks on physical
processes, which is further examined in Section IV.

In contrast to impact, likelihood (of an attack scenario) is
an elusive concept in cyber-security risk management, and
so is its assessment. In safety risk management, which deals
with risk against natural phenomena, e.g. earthquakes [7],
likelihood is understood as the posterior probability of a
given consequence event occurring as a result of the physical
phenomena under study.

In the case of security risk management [8], [9], the
phenomenon of interest is not a cause of nature, but rather
the act of a malicious and intelligent adversary. As such,
there is no objective form of computing the prior probability
of such an event, which renders the notion of likelihood
somewhat void of meaning. One can, however, look at
likelihood of cyber-attacks without the prior probabilities,
and instead use only the conditional probabilities. In this
way, the term likelihood then captures not probabilities of
attacks occurring, per se, but rather captures the likelihood
of attacks already in progress of being successful. Still, due
to the lack of historical data regarding cyber-attacks, and
their intentional and rational nature, it is unfeasible to assess
likelihood based on probabilities in general. To circumvent
this issue, proxies for likelihood are often used, such as the
complexity of the cyber-attack itself, the level of knowledge
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Fig. 1. Illustration of a networked control system architecture subject to
cyber-attacks.

and resources required, and the amount of devices that must
be corrupted [10].

The three elements composing risk are further discussed
in the following subsections.

B. Attack Scenario Description

A typical architecture of CPS is depicted in Fig. 1. At
the top, we have a physical process or plant, which is
controlled and monitored through digital computers over a
possibly unsecured communication network. Measurement of
the plant y[k] ∈ Rm and of possible disturbances d[k] ∈ Rv

are transmitted through the network to digital computers, on
which controller and anomaly detector algorithms have been
implemented. These algorithms compute the control signal
u[k] ∈ Rp used to steer the physical plant, as well as alarm
variables, namely the residual r[k] ∈ Rs, that are evaluated
to determine whether anomalies have been detected, or
not, within the overall system. The control signal u[k] is
transmitted to the actuators over the possibly unsecured
network. Given that the network may be unsecured, the
measurement and control signals may be manipulated along
the communication channels, as depicted in Fig. 1.

In general, data exchanged through the communication
network can be eavesdropped by the adversary, as well as
compromised before being sent to the destination. A wide-
class of attacks are described by attack policies of the form

ỹ[k] = φy
(
Y[0,k], U[0,k], D[0,k]

)
ũ[k] = φu

(
Y[0,k], U[0,k], D[0,k]

)
d̃[k] = φd

(
Y[0,k], U[0,k], D[0,k]

)
,

(1)

where, given a vector variable x[j] ∈ Rn, X[0,k] ,



{x[0], x[1] · · · , x[k]} denotes the set of all samples of
x[j] from time 0 to time k. Specific instances of attack
policies will be revisited in Section III, including those
where the adversary wishes to damage the plant as much as
possible while remaining undetected, and therefore delaying
the triggering of any sort of pro-active mitigation scheme.

C. Risk Analysis

Risk analysis identifies threats and assesses the respective
likelihood and impact on the system. Threat scenarios may
be identified based on historical and empirical data of cyber-
attacks, expert knowledge, and known vulnerabilities in the
system [5]. The report [11] provides a good example of
power system related threat scenarios identified from expert
knowledge. The likelihood of a given threat depends on
the components compromised by the adversary in a given
attack scenario and their respective vulnerability. Quantita-
tive methods can be used to identify the minimal set of
components that need to be compromised for each attack
scenario [12], [13], while the vulnerability of each compro-
mised components is obtained by qualitative means such as
expert knowledge and historical and empirical data [12]. The
potential impact of a threat may be assessed by qualitative
and quantitative methods, for instance, by modeling the
system and simulating the attack scenarios [14].

The risk of different threat scenarios may be summarized
in a two-dimensional risk matrix [5], where each dimension
corresponds to the likelihood and impact of threats, respec-
tively. The objective of the risk management framework is
to reduce the overall risk of attacks, which typically requires
the selection of critical attacks (with high impact and high
likelihood) for deploying targeted risk mitigation strategies.

D. Risk Mitigation

Actions minimizing the risk of threats are determined
within the risk mitigation step. The different actions can be
classified as prevention, detection, and treatment. A brief
overview is provided next, while specific risk mitigation
solutions for CPS are further described in Section V.

1) Prevention: Prevention aims at decreasing the likeli-
hood of attacks by reducing the vulnerability of the system
components, e.g., by encrypting the communication chan-
nels [15] and using firewalls. For instance, with respect to
disclosure attacks violating confidentiality, encryption of the
communication link corresponds to a preventive action.

Through the risk management framework, prevention can
be more efficiently deployed, by taking into account the
available security resources and the most critical scenarios
with higher risk (i.e., higher impact and likelihood). Ex-
amples of recent work addressing the rational allocation of
security are given in Section V-I.

2) Detection: Detection is an approach in which the
system is continuously monitored for anomalies caused by
adversarial actions. Anomaly detection mechanisms (see
Fig. 1) typically involve the processing of measurement and
input data, for instance by fault detection algorithms [16],
to produce the so-called residual sequences R[j,k], which

are then evaluated by detector schemes. Traditional detectors
considered are χ2-detectors (see, for instance, [17]), CUSUM
detectors (see, for instance, [18]), or more generic 2-norm
measures of residual sequences (see, for instance, [19], [20]).

3) Treatment: Once an anomaly or attack is detected,
treatment actions may be taken to disrupt and neutralize
the attack. The attack may be neutralized by replacing the
compromised components or using redundant components. In
the case of the denial-of-service attacks violating availability,
one could have a treatment scheme where the data are re-
sent using a different path from source to destination, thus
avoiding the compromised links [21].

As a concluding remark regarding the risk management
framework, it must be highlighted that risk is a variable that
evolves over time. Novel attack scenarios appear more often
than not, and impact and likelihood of attacks also varies
with the aging of the system components.

Therefore, the effectiveness of the defensive actions and
the evolution of risk over time must be evaluated regularly
using the risk management framework. For instance, in the
case of deception attacks, the attacker may find novel attack
strategies that bypass the current detection mechanisms. This
particular scenario is explored in Section IV-A, and novel risk
mitigation schemes are described in Section V.

III. ATTACK SCENARIOS

In the following, we succinctly revisit some of the key
attack scenarios considered in the literature, examining each
attack in terms of its attack policy and in terms of the
resources required of the adversary for a successful attack:
CPS model knowledge, disclosure resources, and disruption
resources. To provide a wider overview, a broader but
still incomplete sample of common attack scenarios and
recent work tackling them is presented in Fig. 2, where
scenarios are placed along three axes, each corresponding
to a particular resource requirement. In relation to Fig. 1,
’Disclosure resources’ corresponds to the number of channels
the attacker can ’Read and Store’ data from. ’Disruption
resources’ corresponds to the number of channels in which
the attacker can ’Write/Drop’ data. Finally, ’CPS model
knowledge’ corresponds to the extent the attacker has access
to models of the plant, controllers, and anomaly detector
schemes. An advanced attack could very well consist of
multiple stages/scenarios, and evolve in the diagram. For
instance, a first stage could consist of learning of CPS models
by means of eavesdropping attacks, while a second stage
could be to implement undetectable attacks based on the
models learnt.

A. Eavesdropping Attacks
Eavesdropping attacks aim at violating the confidentiality

of the data, and thus disclose private information of the
system [41]. Such attacks are of high importance in privacy-
sensitive applications, for instance when personal health
data is collected and used in medical studies. Additionally,
eavesdropping attacks could also be the first step in a more
damaging and disruptive attack (for instance, replay attacks).
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Fig. 2. Illustration of common attack scenarios. Each axis indicates the
relative amount of a certain resource required to carry out an attack.

CPS model knowledge: the adversary does not have a
model of the plant.

Disclosure resources: the adversary is able to read
some or all of the transmitted data, and store it for later
processing, which yields Y[0,k] = {y[0], · · · , y[k]}, D[0,k] =
{d[0], · · · , d[k]}, and U[0,k] = {u[0], · · · , u[k]}

Disruption resources: the attacker is not able to corrupt
the integrity and availability of the data being transmitted
through the network.

Attack policy: in such an attack scenario, the attack
policies do not affect the transmitted signals, which leads to:

ỹ[k] = y[k]

ũ[k] = u[k]

d̃[k] = d[k].

(2)

B. Open-loop False-data Injection Attacks

In the case of open-loop false-data injection attacks, the
adversary aims at corrupting the integrity of the transmitted
data to affect the system without being detected, a scenario
that has been considered in [22], for instance. Such an attack
scenario has been extensively covered in the literature, and
the reader is referred to Section IV for further references.

CPS model knowledge: the adversary is considered to
have a full model of the cyber-physical system.

Disclosure resources: the adversary does not record
any of the transmitted data for later processing, leading to
Y[0,k] = U[0,k] = D[0,k] = ∅. However, for the adversary to
be able to inject malicious data correctly, disclosure of the
current transmitted data may be needed.

Disruption resources: the attacker is able to corrupt
the integrity of specific data being transmitted through the
network.

Attack policy: in such an attack scenario, the attack
policies φy(∅), φd(∅) and φu(∅) are computed offline based
solely on the known plant models. The real-time implemen-
tation the attack, however, may require that the adversary

can read the current data, so that the data corruption can be
successfully implemented as follows:

ỹ[k] = y[k] + φy(∅) = y[k] + ay[k]

ũ[k] = u[k] + φu(∅) = u[k] + au[k]

d̃[k] = d[k] + φd(∅) = d[k] + ad[k].

(3)

C. Replay Attacks

In replay attacks, the adversary records measurement data
into a buffer, and later replays the recorded measurements
while tampering with the system through other channels,
such as actuators or physical disturbances. Due to the replay-
ing of old measurement data, the tampering goes unnoticed
by anomaly detectors. Replay attacks have been first consid-
ered in [48], where their undetectability was analyzed, and
an additive watermarking scheme was proposed to detect the
attacks. Further developments in the analysis and detection
of replay attacks may be found in the references discussed
in Section V-D.

CPS model knowledge: the adversary does not have a
model of the cyber-physical system.

Disclosure resources: the adversary is able to break
confidentiality of all the measurement data, and records all
of the transmitted measurement data up to a time T , leading
to Y[0,k] = Y[0,T ] = {y[0], · · · , y[T ]}, D[0,k] = D[0,T ] =
{d[0], · · · , d[T ]} for k ≥ T , and U[0,k] = ∅.

Disruption resources: the attacker is able to replace
measurement data with previously recorded data (a form of
integrity violation). Additionally, the adversary is also able
to freely disturb the physical plant directly, e.g., through the
actuators.

Attack policy: in such an attack scenario, the attack
policies become

ỹ[k] = φy(Y[0,T ]) = y[k − T ]
d̃[k] = φd(D[0,T ]) = d[k − T ]
ũ[k] = φu(∅) = au[k],

(4)

where au[k] is a free signal computed offline.

D. Denial-of-Service Attacks

In Denial-of-Service (DoS) attacks, the adversary aims at
dropping transmitted data packets so that the performance
of the closed-loop system is deteriorated [26], [27], perhaps
even resulting in instability.

CPS model knowledge: the adversary does not have a
model of the cyber-physical system.

Disclosure resources: the adversary does not need to
break confidentiality of the transmitted data, leading to
Y[0,k] = D[0,k] = U[0,k] = ∅.

Disruption resources: the attacker is able to drop trans-
mitted data packets and thus block them from reaching the
intended destination (a pure data availability violation). Such
a mechanism is similar to packet drops commonly analyzed
within the research area of control over communication
networks.



Attack policy: in DoS attacks, the attack policies be-
come

ỹ[k] = γy[k]y[k] + (1− γy[k])∅
d̃[k] = γd[k]d[k] + (1− γd[k])∅
ũ[k] = γu[k]u[k] + (1− γu[k])∅,

(5)

where x̃[k] = ∅ is used to denote the absence of the data
x̃[k] at the receiver, and γx[k] ∈ {0, 1} is a binary variable
determined by the corresponding attack policy φx(∅).

IV. QUANTIFYING IMPACT AND LIKELIHOOD

Having characterized common types of attacks, quanti-
tative tools for their risk analysis are now discussed in
more detail. In Section IV-A, we discuss work that identifies
non-trivial attack scenarios, in Section IV-B some tools for
likelihood assessment are presented, and in Section IV-C
tools for impact assessment are presented.

A. Undetectable and Stealth Attacks

In [22], [23], the notion of undetectable attacks is defined
for linear systems. The idea behind the definition is simple,
yet powerful: A false-data injection attack (Section III-
B) is undetectable if the resulting input to the anomaly
detector block in Fig. 1 is identical to a signal the system
could produce without the attacker present. The motivation
behind the concept is that if the received signal could be
the result of a naturally occurring state, then the operator
may have no reason to expect an attack. The possibility of
such undetectable attacks is equivalent to the existence of
invariant zeros in the system. For this reason, these attacks
are sometimes also called zero-dynamics attacks. Especially
dangerous destabilizing undetectable attacks exist when the
plant has unstable zeros (using au[k] in (3)) or unstable poles
(using ay[k] in (3)). It should be noted that an anomaly
detector could also check if the received signal is likely or not
(not only feasible), and in principle also could raise an alarm
when an ’undetectable’ attack is staged. Hence, an attacker
who would like to remain hidden typically would like to
include a model of the anomaly detector while designing
attacks. This leads to the concept of stealth attacks, which
occurred around the same time as the undetectable attacks.

In [18], [52]–[54], attacks against process and power
systems controlled and monitored using SCADA systems
were considered. It was natural to characterize the classes of
attacks that would not raise alarms in the installed anomaly
detectors, and these were called stealth attacks. Note that
these attacks may result in ’un-natural’ inputs to the anomaly
detector block in Fig. 1, but that the detector output still
does not trigger an alarm by design of the attack. Hence, the
set of stealth attacks is larger than the set of undetectable
attacks, but requires a stronger attacker with (at least partial)
knowledge of the detector. Stealthy attacks have been studied
in deterministic [20] and in stochastic [19], [55] settings.
All attack scenarios of Section III, such as replay and DoS
attacks, can be studied in the context of stealth attacks [56].

Many applications and extensions of the undetectable and
stealth attacks have been published. Some examples are listed

next. Coordinated undetectable attacks on the plant input and
output are called covert attacks [51]. In bias attacks [24],
[25], a bias is added to certain signals in a stealthy manner.
Extensions for nonlinear uncertain systems [57], and for
sampled-data systems [58] are also available.

B. Security Indices

The term ’security index’ was first introduced for a linear
dynamical system in steady state in [13] to quantify the
vulnerability of sensor i against attacks modelled as an
additive signal to the sensor measurements. The computation
of this security index αi for sensor i is also provided in [59]
for a power network. In other words, security index in the
context of [13], [59] is a static index. This concept was then
generalized to dynamical systems in [60]. In contrast, the
’security index’ in [61] is defined for the whole dynamical
system. Indeed, the security index in [61] is the maximum
value over all the security indices αi in [13], [59].

The security indices are tools for estimating the com-
plexity of certain undetectable attacks, which serves as a
proxy for their likelihood. A large index means the attacker
is required to have large resources in terms of disruption
resources and model knowledge in order to conduct the
corresponding attack. Hence, such attacks may be deemed
less likely compared to attacks with small indices.

C. Worst-Case Stealth Attacks

In Section IV-A, we have discussed attacks that are hard,
or even impossible, to detect, and in Section IV-B security
indices have been introduced to quantify the difficulty of
implementing such attacks. The next natural problem to
consider is the quantification of the worst possible physical
impact of these attacks. Several works have addressed this
problem by applying tools from the optimal control theory.
In [17], [19], the reachable set of the system state and
estimation error under stealthy data injection attacks are char-
acterized and bounded. In [18], several sensor attack schemes
that maximize impact subject to a no-alarm condition in a
CUSUM detector are characterized. In [20], the worst-case
2-norm impact of stealthy attacks is characterized in terms of
generalized eigenvalue analysis, and worst-case infinity-norm
impact is characterized in terms of linear programs. These
works also highlight how the results can be used to compare
the severity of various attack scenarios, and as such are useful
in risk assessment. Further developments and applications of
these ideas can be found in [56], [62]–[64], for instance.

V. MITIGATION STRATEGIES

In the previous sections, recent literature in the security of
CPS have been revisited under the lens of a risk management
framework. Special attention was paid to the three compo-
nents of risk, by means of a description of different attack
scenarios, and the quantification of the impact and likelihood
of attacks with detectability constraints.

As a natural continuation, the present section reviews
several approaches that have been proposed to mitigate
the risk of attacks, by means of minimizing their impact



and/or likelihood. We label each class of approaches with
’Prevention’, ’Detection’, or ’Treatment’ as introduced in
Section II-D.

A. Tuning of Detector Thresholds [Detection]
The system architecture considered in Fig. 1 includes

anomaly detectors which raise alarms if the received sig-
nals are sufficiently far away from nominal trajectories.
For instance, in the case of χ2-detectors, alarms would be
triggered if the energy of the residual sequence R[j,k] exceeds
a given threshold δ > 0, i.e., ‖R[j,k]‖22 > δ. Due to the
presence of natural disturbances, noise, and modeling errors,
the thresholds of these detectors always need to be tuned
to avoid raising false alarms constantly. However, thresholds
which are too high will expose the system to stealth attacks,
see Section IV-A. A common tool from detection theory
to tune detectors is the ROC curve (Receiver Operating
Characteristic curve, see, for instance, [65]), which plots the
true positive detection rate against the false positive rate.
In [66], it is argued, however, that the ROC curve is not
suitable for tuning detectors against stealth attacks. This is
because stealth attacks by definition have zero true positive
detection rate, and hence the trade-off illustrated by the
ROC curve is not helpful. Rather it is pertinent to map the
thresholds to the worst-case physical impact, using methods
from Section IV-C. A very low detector threshold typically
yields a small worst-case impact, but gives a high false-alarm
rate. Hence, [66] advocates that the worst-case impact should
be plotted against the mean time between false alarms,
to aid security-aware tuning of detectors. Following this
recommendation, several works have developed techniques
for explicitly computing such curves. See, [67], [68], for
instance.

B. Secure State Estimation [Detection, Treatment]
The case for secure state estimation of CPS have concen-

trated on the scenario where na out of m sensors, where
na < m can be arbitrarily compromised by the adversary.
The attack is modeled as an additive signal to the measure-
ment, as shown in (3). A necessary and sufficient condition
for estimating the states of linear dynamical systems under
sensor attacks have been derived for both continuous [69]
and discrete-time [70], which is combinatorial in nature. The
redundancy of the state estimates obtained through multiple
state observers is exploited to achieve exact reconstruction
of the states, despite the presence of sensor attacks as long
as less than half of the sensors have been compromised.
The required number of state observers in both [69], [70]
is

(
m

m−na

)
+

(
m

m−2na

)
, which becomes computationally in-

feasible for a large number of sensors m. This complexity
issue has been addressed using various approaches to limit
the search space, including satisfiability modulo theory [71],
l0 minimization [72], set covering [73], set partitioning [74],
and an adaptive switching mechanism [75].

C. Privacy-preservation by Noise Injection [Prevention]
Privacy in CPS means sharing only the necessary informa-

tion between subsystems in order to achieve either estimation

or control objectives, while preventing eavesdroppers from
obtaining sensitive data. The information shared is most
often the aggregate to preserve the privacy of the individual
subsystems. However, aggregation is generally not sufficient,
and often the transmitted data is also intentionally corrupted
by some mechanism. One popular mechanism, deriving from
the database literature, is differential privacy. To attain differ-
ential privacy of a pre-defined level, the data holder typically
adds a noise signal of sufficient variance to the released
data to make estimation of the source data hard. In many
cases, the optimal noise distribution is Laplacian [76]. A
comprehensive tutorial paper [37] defines differential privacy
in the context of systems and control and summarizes the
various privacy-aware algorithms that have been devised
for estimation [35], distributed control [34] and distributed
convex optimization [39]. Differential privacy is one way of
quantifying privacy, but there are other notions that also rely
on random perturbations. Examples include perturbations
adapted to the average consensus protocol [33], [38] or
estimation problems [41], minimizing directed information
in control loops [40], and minimizing Fisher information in
estimation [47]. Game theory is also a viable approach to
the privacy problem [36].

D. Watermarking and Moving Target Defense [Detection,
Prevention]

Traditionally, watermarking is used in audio and image
processing, where information is embedded in a carrier signal
which is then used to verify the authenticity of the data. In
the case of CPS security, watermarking or more commonly
known in the literature as physical watermarking in this
context, serves to authenticate that the CPS is operating
normally by detecting irregularities in the measurable signals
of the CPS when a watermark is embedded in any of the
accessible signals.

In [49], this is achieved for a discrete-time linear dy-
namical system by designing a watermark signal which is
superimposed on the control input that is optimal under
the linear quadratic Gaussian (LQG) framework. In [50],
a multiplicative watermarking signal is introduced in the
sensor output of a discrete-time linear dynamical system,
which is then removed on the controller side using a bank
of filters. The authors showed that this watermarking scheme
does not affect the closed-loop performance of the system in
the absence of replay attacks.

However, watermarking is vulnerable against an adversary
who has knowledge of the system model. One mechanism
to address this shortfall is known as moving target defense,
which was introduced in [77]. The idea is to obfuscate
the adversary’s knowledge of the system by varying the
system’s parameters over time (thereby acting as a moving
target) to counter possible system identification which can
be carried out by the adversary. A related idea involving the
defender creating model uncertainty for the attacker was also
proposed in [78]. Different mechanisms for moving target
defense are further analyzed in [79], which include switching
between different modes; an extended system interconnected



with the plant which do not affect system performance; and
introducing random nonlinearities to the output.

E. Coding and Encryption Strategies [Prevention]

A plant which is controlled over a communication channel
runs the risk of being exposed to adversaries who have
access to the channel, who can then mount an attack based
on the information gathered between the plant and estima-
tor/controller. As such, coding and encryption methods are
employed to protect the flow of information over a network.
On one hand, we have coding schemes which are generally
publicly known and any interception of data may expose
private information of the CPS to attackers. On the other,
encryption schemes are private by means of secret keys and
hence adds a layer of security.

A common setup using encryption methods is where the
information flow on the plant side is encrypted [15], [42]–
[46]. Homomorphic encryption is a class of encryption which
allows for computation on the encrypted data. This enables
the implementation of controllers directly on encrypted data.
Semi or partially-homomorphic encryption allows only a
subset of computations to be performed on the encrypted
data. The Pallier method [80] is one such example, which
enables the summation of non-encrypted data through the
multiplication of encrypted data.

Stability and performance guarantees for stabilizing lin-
ear dynamical systems under semi-homomorphic encryption
with static and dynamic controllers are provided by [15],
[42], [43], [45] and [81], respectively. In [46], the authors
provide sufficient conditions to stabilize a nonlinear dy-
namical system, in the form of the encryption parameters,
which recovers the results in [45] when linear controllers
are considered.

In contrast to the aforementioned encryption techniques,
coding schemes do not use secret keys. If data is intercepted
without any errors, it may be decoded by the eavesdropper.
Hence, smart design of the coding scheme either at the plant
or estimator/controller side only (one-way coding) [82]–[84]
or on both ends (two-way coding) [85] aim to mitigate
attacks. In comparison to the homomorphic encryption tech-
niques discussed above, these coding schemes encode the
transmitted signal, which is then decoded when received
by the controller. Hence, this does not involve designing a
controller that acts upon the encoded signal, and often offers
a solution that is low in computation.

F. Countering DoS Attacks [Treatment]

As described in Section III-D, DoS attacks refers to the
malicious disruption of information flow over the com-
munication medium. Current state-of-the-art strategies in
countering DoS attacks include game-theoretic approaches
[28]–[30], optimal control [26] and event-triggered control
[27], [31], [32], [86], to name a few.

In the game-theoretic works of [28], [29], the interaction
between the adversary and the controller is formulated as
a zero-sum dynamic game. These works aim to derive an
optimal strategy for the adversary to cause a DoS attack,

in order to maximize the impact on control performance.
The authors of [30] however, consider the state estimation
problem, where the interplay between the sensor and adver-
sary is modeled as a stochastic Bayesian game. Here, the
optimal DoS attack strategy is devised to degrade estimation
performance. The same objective is also studied in [26] using
tools from optimal control theory, where safety specifications
are also taken into consideration.

The works in [27], [31], [32], [86] provide explicit char-
acterization of the adversary’s frequency and duration of
implementing the DoS attacks in order to adversely affect
stabilization [27], [31], [86] or consensus [32] of the dynam-
ical system. Deterministic guarantees are provided in [27],
[32], [86] and stochastic ones are given in [31].

G. Distributed Algorithms [Detection, Treatment]

The networked nature of CPS often means that there are
nodes which only have partial access to the entire system,
such that efficient mitigation of adversarial attacks cannot
be performed using regular centralized techniques. Hence,
distributed algorithms are attractive in this regard.

A control theoretic perspective of characterizing the vul-
nerability of a CPS towards sensor and actuator attacks
was studied in [87] for a linear consensus network. Further,
distributed algorithms were also devised for attack detection
and identification. On the other hand, distributed algorithms
under adversarial attacks have also been developed for state
estimation [25], [88], consensus [89]–[92], and optimization
[93].

H. Methods Related to Robust Statistics [Detection, Treat-
ment]

For the problem of state estimation in the presence of
possibly attacked sensors, several works have employed
methods inspired by robust statistics. In essence, the idea is
to design filters which provide estimates that are insensitive
to large fractions of faulty or attacked sensors (’outliers’), but
still are accurate. For example, the least-squares method is
highly sensitive to outliers, whereas a median-based filter can
tolerate up to a fraction 1/2 corrupted sensors at the expense
of general estimation quality. The problem considered is very
similar to that addressed in Section V-B, but the starting
point here is often probabilistic, and the effect of the attack
is generally not guaranteed to be completely eliminated.

In [94], the least trimmed squares method is applied to
reduce the influence of sensor attacks on estimating the
states in a power system. In [95], a more general convex-
optimization-based framework for robust state estimation is
proposed. A similar state estimation problem with a binary
state is considered in [96], and an optimal threshold-based
estimator is characterized. An extension is presented in [97],
where also a fundamental trade-off between the estimation
performance and tolerance to attacks is identified. In [90]–
[93], local filters that discard extreme values are used to
robustify distributed algorithms in the presence of adversarial
nodes (see also Section V-G).



I. Rational Security Allocation [Prevention]

When facing a difficult control problem, one should al-
ways try to change the process to make the problem easy.
This insight could also be applied to the CPS security
problem, and the risk assessment in Section II could serve
as a guide. A simple example is plants with unstable zeros,
which allow for unbounded undetectable attacks on the input
(see Section IV-A). The addition, or movement, of a sensor
can remove such an unstable zero, however. Hence, if the
risk assessment concludes that an undetectable attack against
the actuator is a high-risk scenario, moving a sensor could
block the scenario. This may be easier than implementing
other security mitigation strategies.

Many industrial control systems are of a large scale
which include hundreds of sensors and actuators, and are
often originally built without cyber-security in mind. Se-
curing these systems under a budget constraint often leads
to formidable combinatorial optimization problems unless
special structures can be exploited. In the literature, there are
several approaches in treating the rational security allocation
problem. Distinguishing features include identifying the mea-
sures needed to block high-risk scenarios, and determining
the method of measurement for security.

Optimal allocation of new sensors, actuators, or leaders
(in multi-agent systems) is one possible measure to increase
security. Although inherently being a combinatorial opti-
mization problem, it can sometimes be efficiently (albeit sub-
optimally) solved [98]–[100]. Although these works are not
always motivated by security concerns, the increase of com-
ponent redundancy often improves the security as measured
by security indices (Section IV-B). Other security measures
that can be allocated include authentication, encryption, or
coding of critical channels, physical protection of especially
important actuators and sensors [10], [21], [101], multi-
rate sampling in certain sensors [58], and saturation settings
on actuators [102], [103]. By securing only a few well-
selected components, one can generally block large classes
of attack scenarios [10]. For instance, if a few protected
sensors can always be trusted, classical methods from the
field of fault-tolerant control [16], such as ’virtual sensing’,
can be used in place of other more computationally expensive
security mitigation strategies [18], [104], [105]. Game theory
is another approach to optimally allocate and configure CPS
defense components, see, for instance [106]–[108].

VI. CONCLUDING REMARKS

In this paper, we have provided a risk-based introduction
to CPS security and privacy. The authors believe that a
careful risk analysis singling out the most relevant attack
scenarios is a good starting point for the design of secure
and resilient CPS. The reason for this is that many security
mitigation strategies are fragile to changes in the attacker or
defender models. For instance, some schemes can completely
eliminate attacks that affect up to half of the sensors, but
cannot guarantee anything when the attacker is able to
control more sensors than that. Similarly, by securing a
single actuator or sensor it may be possible to completely

block certain classes of attacks. See Section V-I for further
examples.

We have also provided an overview of recent work in the
area of CPS security and privacy. The overview is by no
means complete, but has hopefully illustrated the breadth
of the problems considered and the proposed solutions so
far. It is interesting to note that the field has been in rapid
development, and almost all references are no more than 10
years old. But indeed there are still many promising research
directions to pursue. We discuss a few of them next.

Machine learning and artificial intelligence will undoubt-
edly have a huge impact on security and privacy in CPS. On
one hand, machine learning has clear applications in the data-
driven detection and diagnosis of anomalies and attacks. On
the other hand, applications of machine learning to control
systems are becoming increasingly relevant, but also raise
privacy issues, as well as concerns about its vulnerability to
data poisoning attacks. Furthermore, from a control systems
perspective, such methods typically come with few formal
guarantees, which poses substantial challenges to safety-
critical applications. This aspect (among others) is certainly
worth future investigation.

Investigating possible fundamental trade-offs between
properties discussed in the paper is another interesting prob-
lem. One example is the trade-off between privacy and
utility, where deliberate injection of noise increases the level
of privacy at the expense of system performance. Another
example is possible trade-offs between safety and security.
For example, many CPS are safety critical and security
solutions which are too rigid could interfere with physical
safety procedures.

The areas of fault detection and fault-tolerant control
are well established, and many tools developed there have
inspired the work discussed in this paper. Nevertheless, there
are certainly more connections to be made, for instance,
with regards to the diagnosis of root-causes of faults and
attacks. A key difference between faults and attacks is that
the latter are caused by an intelligent agent with an incentive.
In contrast, faults are generally random, which simplifies the
risk analysis.

The works discussed in this paper have often used differen-
tial or difference equations for modeling the CPS. Discrete-
event systems is another relevant modeling framework to be
considered. In fact, these models may be more appropriate
for modeling certain aspects, such as operational procedures
in control centers and low-level safety functionality. These
models may also be more amenable for the application of
formal methods and verification.

We conclude this tutorial on security and privacy for
CPS from a control theoretic perspective by noting the rich
proliferation of results which provide provable guarantees
through understanding the dynamics of the CPS considered.
Nonetheless, its importance and the emergence of new
approaches discussed above ensures continual progress in
this exciting area which has captured the attention of our
community.
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