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Abstract: The alternating direction method of multipliers is a powerful technique for structured
large-scale optimization that has recently found applications in a variety of fields including
networked optimization, estimation, compressed sensing and multi-agent systems. While appli-
cations of this technique have received a lot of attention, there is a lack of theoretical support for
how to set the algorithm parameters, and its step-size is typically tuned experimentally. In this
paper we consider three different formulations of the algorithm and present explicit expressions
for the step-size that minimizes the convergence rate. We also compare our method with one of
the existing step-size selection techniques for consensus applications.

1. INTRODUCTION

The alternating direction method of multipliers (ADMM)
is a powerful algorithm for solving structured convex op-
timization problems. Combining the strong convergence
properties of the method of multipliers and the decom-
posability property of dual ascent, the method is partic-
ularly applicable to large-scale decision problems such as
compressed sensing (Yang & Zhang 2011), image process-
ing (Figueiredo & Bioucas-Dias 2010), regularized esti-
mation (Wahlberg et al. 2012), and support vector ma-
chines (Forero et al. 2010). This broad array of applica-
tions has triggered recent attention in developing a better
understanding of the theoretical properties of ADMM.

The origins of ADMM can be traced back to the al-
ternating direction implicit (ADI) techniques for solving
elliptic and parabolic partial difference equations. In the
70’s, see Boyd et al. (2011) and references therein, ADMM
was first introduced for solving optimization problems and
enjoyed much attention in the following years. However,
the main advantage of applying ADMM in solving op-
timization problems, its ability to deal with very large
problem through its superior stability properties and its
decomposability, remained largely untapped due to the
lack of ubiquity of very large scale problems. Nevertheless,
the technique has again raised to prominence in the last
few years as there are many applications, e.g. in financial
or biological data analysis, that are too large to be handled
by generic optimization solvers.

Many large-scale problems can be cast as convex optimiza-
tion problems. If the problem has favourable structure,
then decomposition techniques such as primal and dual
decomposition allows to distribute the computations on
multiple processors. One then isolate subproblems that can
be solved effectively, and coordinate these using gradient
or sub-gradient methods. If problem parameters, such as
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Lipschitz constants and convexity parameters are known,
then optimal step-sizes and associated convergence rates
are well-known (Nesterov (2004)). Unfortunately, the con-
vergence properties of the gradient method can be sensitive
to the choice of the step-size, even to the point where poor
parameters can lead to algorithm divergence (Ghadimi
et al. 2011). The ADMM technique, on the other hand,
converges for all values of a single tuning parameter. How-
ever, the parameter also influences the numerical condi-
tioning and convergence speed of the method, and there is
currently a lack of theoretical support for how to optimally
tune this parameter. The aim of this paper is to contribute
to a better understanding of the convergence properties of
the ADMM method and to develop optimal step-size rules
for some particular classes of problems.

The outline of this paper is as follows. In the next sec-
tion we review the necessary background on the ADMM
method. In Section 3 we study l2-regularized quadratic
programming and give explicit expressions for the optimal
step-size that achieves the optimal convergence rate. We
then shift our focus to the problem of achieving con-
sensus in networks using ADMM in Section 4. We pose
the problem for general graphs and provide closed-form
solutions for the optimal step-size for the particular case of
k-regular graphs. In Section 5 we briefly visit the problem
of l1-regularized quadratic programming and comment on
equitable step-size selection policies. Numerical results are
presented in Section 6. Concluding remarks and future
directions are presented in the final section.

2. THE ADMM METHOD

The ADMM algorithm solves problems of the form

minimize f(x) + g(z)
subject to Ax+Bz = c

where f and g are convex functions, x ∈ Rn, z ∈ Rm,
A ∈ Rp×n, B ∈ Rp×m and c ∈ Rp; see Boyd et al. (2011)
for a detailed review. Our focus on this paper is on the
restricted class of problems of the form



minimize f(x) + g(z)
subject to x− z = 0.

(1)

Relevant examples that can be put in this form are, e.g.
regularized estimation, where f is the estimator loss and g
is the regularization term, and various forms of networked
optimization, see Erseghe et al. (2011) and (Boyd et al.
2011, § 7,8). The method is based on the augmented
Lagrangian

Lρ(x, z, µ) = f(x) + g(z) + (ρ/2)∥x− z∥22 + µT (x− z)

and performs sequential minimization of the x and z
variables, followed by a dual variable update:

xk+1 = argmin
x

Lρ(x, z
k, µk)

zk+1 = argmin
z

Lρ(x
k+1, z, µk) (2)

µk+1 = µk + ρ(xk+1 − zk+1).

These iterations indicate that the method is particularly
useful when the x- and z-minimizations can be carried
out efficiently (e.g. admit closed-form expressions). One
advantage of the method is that there is only one single
algorithm parameter, ρ, and under rather mild conditions,
the method can be shown to converge for all values of
the parameter; see, e.g., Boyd et al. (2011), Mota et al.
(2011). This is in contrast with, e.g. the gradient method
where the iterates diverge if the step-size parameter is
chosen too large. However, ρ has a direct impact on
the convergence speed of the algorithm, and inadequate
tuning of this parameter can render the method very
slow. In the remaining parts of this paper, we will derive
explicit expressions for the step-size that minimizes the
convergence time for some particular classes of problems.

3. OPTIMAL CONVERGENCE SPEED FOR
ℓ2-REGULARIZED QUADRATIC MINIMIZATION

Regularized estimation problems

minimize f(x) +
δ

2
∥x∥qp

are abound in statistics, machine learning, and control.
In particular, ℓ1-regularized estimation where f(x) is
quadratic and p = q = 1, and sum of norms regularization,
where f(x) is quadratic, p = 2 and q = 1 have recently
received significant attention.

Our initial result will focus on ℓ2-regularized estimation,
where f(x) is quadratic and p = q = 2, since the
corresponding ADMM-iterations are linear and amendable
to analysis. To this end, consider a problem in the form

minimize
1

2
x⊤Qx+ q⊤x+

δ

2
∥z∥22

subject to x− z = 0,
(3)

where Q ∈ Sn+ is a positive definite n× n matrix, x, q, z ∈
Rn and δ ∈ R+ is constant. The ADMM iterations read

xk+1 = (Q+ ρI)−1(ρzk − µk − q)

zk+1 =
µk + ρxk+1

δ + ρ
µk+1 = µk + ρ(xk+1 − zk+1).

(4)

The z-update implies that µk = (δ+ ρ)zk+1 − ρxk+1, that
together with the µ-update gives

µk+1 = (δ + ρ)zk+1 − ρxk+1 + ρ(xk+1 − zk+1) = δzk+1.

The iterations in (4) converge whenever the iterates on
µ converges, i.e. when xk = zk. Hence, to study the
convergence of (4) one can investigate how the errors
associated with xk or zk vanish. Inserting the x-update
into the z-update and using that µk = δzk, we find that

zk+1 =
δI + ρ(ρ− δ)(Q+ ρI)−1

δ + ρ
zk − ρ(Q+ ρI)−1

δ + ρ
q.

Denote ek+1 := zk+1 − zk. Then

ek+1 =
1

δ + ρ

(
δI + ρ(ρ− δ) (Q+ ρI)

−1
)
ek, (5)

and E := 1
δ+ρ

(
δI + ρ(ρ− δ) (Q+ ρI)

−1
)
. Hence, the

convergence of (4) can be studied via the error dynamics
(5). This allows us to state the following result.

Theorem 1. The iterations (4) converge for all values of
ρ > 0 and δ > 0. The optimal constant step-size ρ⋆ which
minimizes the convergence rate is given by

ρ⋆ =


√
δλ1(Q) if δ < λ1(Q),√
δλn(Q) if δ > λn(Q),

δ otherwise.

(6)

Proof. The iterations (4) converge if and only if the
spectral radius of the matrix E in (5) is less than one.
Let λi, i = 1, . . . , n be the eigenvalues of Q. Then, the
eigenvalues of E are given by

f(ρ, λi) =
δ + ρ(ρ−δ)

λi+ρ

δ + ρ
=

ρ2 + λiδ

ρ2 + (λi + δ)ρ+ λiδ
. (7)

Since λi, ρ, δ ∈ R+, we conclude that |f | < 1 which
completes the first part of the proof. To find ρ⋆, note that

ρ⋆ = argmin
ρ

max
i

{f(ρ, λi)} (8)

From the first equality in (7), f(ρ, λ) is monotone decreas-
ing in λ when ρ > δ and monotone increasing when ρ < δ.
Hence, when ρ > δ,

max
i

f(ρ, λi) = f(ρ, λ1)

By first-order optimality condition, f(ρ, λ1) is minimized
by ρ⋆ =

√
λ1δ. However, ρ⋆ > δ only if λ1 > δ. For δ ≥ λ1,

0 ≤ (ρ− δ)2 ≤ (ρ− δ)(ρ− λ1) implies that

f(ρ, λ1) ≥
ρ2 + λ1δ

ρ2 + (λ1 + δ)ρ+ λ1δ + (ρ− δ)(ρ− λ1)
=

1

2

but ρ = δ attains f(δ, λ1) = 1/2 and is hence optimal.

A similar argument applies for ρ < δ, in which case

max
i

f(ρ, λi) = f(ρ, λn)

Similarly as above, when δ > λn, ρ
⋆ =

√
λnδ is the optimal

step-size. For δ ≤ λn, 0 ≤ (δ − ρ)2 ≤ (λn − ρ)(δ − ρ) gives

f(ρ, λn) ≥
1

2
hence ρ = δ is optimal. �

Fig. 1 depicts the values of the optimal step-size ρ⋆ versus
the penalty constant δ.

Corollary 2. For ρ = δ,

λi(E) = 1/2, i = 1, . . . , n

and the convergence factor of the error dynamics (5) is
independent of Q.
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Fig. 1. Locus of ρ⋆ as a function of δ.

Remark 3. The aforementioned analysis also applies to
the more general case with a cost function of the form
1
2 x̄

⊤Q̄x̄ + q̄⊤x̄ + δ
2 z̄

⊤P̄ z̄ where P̄ ∈ Rn×n
+ . One then first

performs a change of variables of the form z = P̄ 1/2z̄ that
transforms the problem into the form (3) with x = P̄ 1/2x̄,
q = P̄−1/2q̄, and Q = P̄−1/2Q̄P̄−1/2, and everything
follows as described earlier.

4. OPTIMAL CONVERGENCE RATE FOR
CONSENSUS ON K-REGULAR GRAPHS

The ADMM method has also been used as a basis for dis-
tributed optimization and consensus algorithms on graphs.
In this section, we develop optimal step-size rules for
ADMM-based consensus and give explicit formulas for the
optimal step-size for k-regular graphs.

Let G(V, E) be a connected undirected graph with vertex
set V and edge set E . Each vertex i ∈ V represents an
agent, and an edge (i, j) ∈ E means that agents i and
j can exchange information. We let di denote the degree
of vertex i, i.e. the number of edges incident on i. Each
agent i holds a value yi and it only coordinates with its
neighbors Ni = {j : (i, j) ∈ E} to compute the network-
wide average x̄ = 1

|V|
∑

i∈V yi. Let us introduce auxiliary

variables z(ij) ∈ R for each (i, j) ∈ E . The network-wide
average is then the solution to the following optimization
problem

minimize
1

2

∑
i∈V

(xi − yi)
2

subject to xi = z(i,j) ∀i ∈ V, ∀(i, j) ∈ E .
(9)

We will now use the ADMM algorithm to develop a
distributed algorithm for finding the average consensus.
To this end, the augmented Lagrangian is

Lρ(x, z, µ) =
∑
i∈V

1

2
(xi − yi)

2 +
∑
i∈V

∑
j∈Ni

µij(xi − z(i,j))

+
ρ

2

∑
i∈V

∑
j∈Ni

(xi − z(i,j))
2, (10)

where µij and ρ are the lagrange multiplier at node i
associated with edge (i, j) and the constant step-size, re-
spectively. Each node i, in addition to separately perform-
ing the minimization of (10) with respect to the primal
variables xi and z(i,j), executes the gradient ascent updates
on the dual variables µij as following

xk+1
i =

yi −
∑

j∈Ni
µk
ij + ρ

∑
j∈Ni

zk(i,j)

1 + ρdi
, (11)

zk+1
(i,j) =

xk+1
i + xk+1

j

2
+

µk
ij + µk

ji

2ρ
, (12)

µk+1
ij = µk

ij + ρ(xk+1
i − zk+1

(i,j)). (13)

Note that (11) and (12) are computed analytically by con-
sidering the first order optimality condition. The iteration
can be simplified by noting that at optimality, (12) results
in µ⋆

ij + µ⋆
ji = 0. Thus, setting µ0

ij + µ0
ji = 0 guarantees

µk
ij + µk

ji = 0, ∀k > 0. Hence, after some simplifications,
the above iterations read as

xk+1
i =

yi − ρ
2

∑
j∈Ni

∑k
t=1 x

t
i − xt

j

1 + ρdi
+

ρ
2

∑
j∈Ni

xk
i + xk

j

1 + ρdi
.

Or equivalently,

xk+1 = ∆−1

[
y +

ρ

2

(
(D +A)xk − (D −A)

k∑
t=1

xt

)]
,

(14)

where A ∈ Rn×n is the symmetric adjacency matrix
associated with G andD is the diagonal degree matrix, i.e.,
D = diag(A1n), where 1n is a vector with n components
equal to 1. Furthermore, ∆ := I + ρD. To study the
stability of (14) we form the difference of two successive
iterations ek := xk+1 − xk as following

ek := ∆−1
[ρ
2
(D +A)

(
xk − xk−1

)
− ρ

2
(D −A)xk

]
.

Define x̃k :=

[
xk+1

xk

]
and form the following linear

equality

x̃k = Mx̃k−1, M =

[
I + ρ∆−1A −ρ

2
∆−1(D +A)

I 0

]
.

(15)

One can check that any eigenvector of M given by

M

[
u
v

]
= λ

[
u
v

]
with nonzero u, v ∈ Cn should fulfill

u = λv. Replace u by λv and form the eigenvalue equality,
as

λ2v − λ(I + ρ∆−1A)v +
ρ

2
∆−1(D +A)v = 0. (16)

Multiplying both sides of (16) from the left by v⊤∆, we
have

λ2v⊤∆v − λv⊤(∆ + ρA)v +
ρ

2
v⊤(D +A)v = 0.

Define a1(ρ, v) := v⊤(∆ + ρA)v, a2(ρ, v) := v⊤∆v and
a3(v) := v⊤(D + A)v ∈ R. It can be shown that the
eigenvalues of M satisfy

ℓ(ρ, v) =
a1 ±

√
a21 − 2ρa2a3
2a2

:= ℓr(ρ, v) + ȷℓc(ρ, v), (17)

where ℓr, ℓc ∈ R. Next, we check the stability of (14).

Lemma 4. For all values of ρ > 0 and v ∈ Cn, |λi| ≤ 1,
i ∈ 1 . . . 2n., where λi is the i-th eigenvalue of M and
|λ1| ≤ |λi| ≤ |λ2n|. Moreover, vector 12n is an eigenvector
corresponding to λ = 1.

Proof. From the fact that θ⊤Mθ ≤ |λ2n|θ⊤θ, with θ =[
λv
v

]
, one can see that λ2n is given by max

v
|ℓ| in (17).



If the value of (17) is real, i.e., ℓc(ρ, v) = 0, then |ℓ| =
|a1|+

√
a2
1−2ρa2a3

2a2
. Note that a1 > 0 (since I+ρ(D+A) > 0),

so by replacing a1, a2, a3 in (17), for the magnitude of the
real eigenvalues of M denoted by |λr

i |, where v = vi such
that [λr

i v
⊤
i v

⊤
i ]

⊤ is the corresponding eigenvector of λr
i , we

obtain

2|λr
i | = 1 + ρ

v⊤Av

v⊤∆v
+

√
1 +

(
ρv⊤Av

v⊤∆v

)2

− 2
ρv⊤Dv

v⊤∆v
.

since v⊤(D−A)v ≥ 0, one can replace ρv⊤Av with ρv⊤Dv
under the square root in the above equation and find the
following upper-bound:

2|λr
i | ≤ 1 + ρ

v⊤Av

v⊤∆v
+

√
1 +

(
ρv⊤Dv

v⊤∆v

)2

− 2
ρv⊤Dv

v⊤∆v

= 1 + ρ
v⊤Av

v⊤∆v
+ |1− ρv⊤Dv

v⊤∆v
| = 2− ρ

v⊤(D −A)v

v⊤∆v
≤ 2.

On the other hand, when ℓc(ρ, v) ̸= 0, then the magnitude

of eigenvalues of M are given by |λc
i | =

√
ρv⊤(A+D)v

2v⊤∆v
. One

can check that 2v⊤∆v − ρv⊤(A + D)v = v⊤(2I + ρ(D −
A))v > 0, hence |λc

i | < 1. To verify that λ = 1 is an
eigenvalue of M , one can set u = v = 1n and conclude
that M12n = 12n. �

Next, we pose our main result of this section and then we
present required steps to prove it.

Theorem 5. For a k-regular graph, i.e., di = k ≥ 2∀i ∈ V,
the optimal step-size which minimizes the convergence rate
of (14) is given by

ρ⋆ =
1√

k2 − l2
(18)

where l := λn−1(A).

We are interested in minimizing the magnitude of the
second largest eigenvalue of M , i.e., |λ2n−1|, which is
equivalent to minimizing the convergence rate of (14). To

this end one should maximize the value of w⊤Mw
w⊤w

where

w ∈ C2n and w⊤12n = 0. The orthogonality condition is
due to the fact that 12n is the eigenvector corresponding
to the maximum eigenvalue λ = 1 of M . To achieve this,
we first define the function s(ρ):

s(ρ) := max
v,v⊤1n=0

|a1 ±
√
a21 − 2ρa2a3
2a2

| (19)

for ρ ∈ R+. For |λ2n−1| we have the following lemma.

Lemma 6. The magnitude of the second largest eigenvalue
of M , i.e., |λ2n−1|, is given by the following equation

|λ2n−1| = max{s(ρ),
ρ
∑

i∈V di

n+ ρ
∑

i∈V di
}. (20)

Proof. We know that all the eigenvalues ofM satisfy (17).
Consider |V| = n and set v = 1n then, a1 = n+2ρ

∑
i∈V di,

a2 = n + ρ
∑

i∈V di and a3 = 2
∑

i∈V di. Replacing a1, a2
and a3 in (17) leads to

ℓ(ρ,1n) = {1,
ρ
∑

i∈V di

n+ ρ
∑

i∈V di
}. (21)

But λ = 1 is the simple maximum eigenvalue of M and
we discard it. Still the second term of (21) might be the

magnitude of the second largest eigenvalue ofM . Note that
any v = α1n for α ∈ R leads to the same result as (21).
Another possibility for the maximum magnitude of λ2n−1

is when we have v⊤1n = 0 in (17) and maximize it with
respect to v. For such case (19) offers the maximum bound.
Hence, (20) holds. �

Thus, the optimal step-size ρ⋆ that minimizes |λn−1| is

ρ⋆ := argmin
ρ

max{s(ρ),
ρ
∑

i∈V di

n+ ρ
∑

i∈V di
}. (22)

Let v⊥ ∈ Cn and v⊥1n = 0. The next result characterizes
the behavior of |ℓ(ρ, v⊥)| with respect to ρ for the case
where the value of (17) is complex, i.e., ℓc(ρ, v⊥) ̸= 0.

Lemma 7. Let v⊥ ∈ Cn such that v⊥1n = 0. The
magnitude of (17), |ℓ(ρ, v⊥)|, where ℓc(ρ, v⊥) ̸= 0 is
monotonically increasing with respect to ρ.

Proof. For ℓc(ρ, v⊥) ̸= 0, |ℓ(ρ, v⊥)| =
√

ρv⊤
⊥(A+D)v⊥

2v⊤
⊥∆v⊥

. The

derivative of |ℓ(ρ, v⊥)| with respect to ρ is

∇ρ|ℓ| =
1

2

√
2v⊤⊥∆v⊥

ρv⊤⊥(A+D)v⊥

(v⊤⊥(A+D)v⊥)(v
⊤
⊥v⊥)

2(v⊤⊥∆v⊥)2
≥ 0.

which proves that |ℓ(ρ, v⊥)| is monotone increasing for
ℓc(ρ, v⊥) ̸= 0. �

In the sequel, we restrict our results to k-regular graphs. In
such graphs, di = k ≥ 2, ∀i ∈ V and the adjacency matrix
A has the largest eigenvalue λn(A) = k associated with
1n as the eigenvector. For a k-regular graph, the following
lemma characterizes the magnitude of the eigenvalues of
M (17) is real.

Lemma 8. For a k-regular graph, if ℓc(ρ, v⊥) = 0, then the
magnitude of (17), |ℓ(ρ, v⊥)|, is monotonically decreasing
with respect to ρ.

Proof. When ℓc(ρ, v⊥) = 0, we have |ℓ(ρ, v⊥)| =
|ℓr(ρ, v⊥)|. For a k-regular graph, we have ∆ = (1 + ρk)I
and a1 = v⊤⊥((1 + ρk)I + A)v⊥, a2 = (1 + ρk)v⊤⊥v⊥ and
a3 = v⊤⊥(A + kI)v⊥. By replacing a1, a2 and a3 in (17)
and taking into account that ℓc(ρ, v⊥) = 0, one obtains

2|ℓ(ρ, v⊥)| = 1 + λ̄f(ρ) +
√
1 + λ̄2f2(ρ)− 2kf(ρ)

where λ̄ :=
v⊤
⊥Av⊥
v⊤
⊥v⊥

and f(ρ) = ρ
1+ρk . Let g(ρ, v⊥) :=

2|ℓ(ρ, v⊥)|. Note that λ1(A) ≤ λ̄ ≤ λn−1(A) = l. Taking
the derivative of g(ρ, v⊥) with respect to ρ yields

∇ρg = f ′(ρ)
(
λ̄+ (1 + λ̄2f2(ρ)− 2kf(ρ))−

1
2 (λ̄2f(ρ)− k)

)
.

Since f ′(ρ) = 1
(1+ρk)2 > 0, we can further simplify the

above derivative and check its negativity:

λ̄+ (1 + λ̄2f2(ρ)− 2kf(ρ))−
1
2 (λ̄2f(ρ)− k) < 0.

By replacing f(ρ) in the second term of the above inequal-
ity we have

λ̄− (1 + λ̄2f2(ρ)− 2kf(ρ))−
1
2

(
k + ρ(k2 − λ̄2)

1 + ρk

)
< λ̄− (1− k

ρ

1 + ρk
)−1

(
k + ρ(k2 − λ̄2)

1 + ρk

)
= −(k − λ̄+ ρ(k2 − λ̄2)) < 0.



Note that from the first to the second inequality we have
replaced λ̄ with k in the inverse square root term (since
λ̄ < k). �
Corollary 9. For a k-regular graph and a given vector
v⊥ ∈ Cn and v⊥1n = 0, the value of ρ̂ = argmin

ρ
|ℓ(ρ, v⊥)|

is obtained by setting the square root in (17) to be equal
to 0, i.e., a1(ρ̂, v⊥)

2 − 2ρ̂a2(ρ̂, v⊥)a3(v⊥) = 0.

In k-regular graphs and a given vector v⊥1n = 0, Corol-
lary 9 indicates that the minimum of |ℓ(ρ, v⊥)| happens
when ℓ(ρ, v⊥) has multiplicity 2. Hence, if we set D = kI

and λ̄ :=
v⊤
⊥Av⊥
v⊤
⊥v⊥

and then replace them in a1(ρ̂, v⊥)
2 −

2ρ̂a2(ρ̂, v⊥)a3(v⊥) = 0, we can find ρ̂ as

ρ̂ := argmin
ρ

|ℓ(ρ, v⊥)| =
1√

k2 − λ̄2
. (23)

Additionally, ρ̂ is the locus of minimal points of the
magnitude of (17) for different values of λ̄. In the sequel,
we highlight the properties of ρ̂.

Lemma 10. For k-regular graphs, ρ̂ in (23) is monotone
increasing with respect to λ̄.

Proof. The result can be verified by checking that the

derivative of (23) with respect to λ̄ :=
v⊤
⊥Av⊥
v⊤
⊥v⊥

is positive.

�
Lemma 11. For k-regular case, if the value of (17) is
complex, i.e., ℓc(ρ, v⊥) ̸= 0, then |ℓ(ρ, v⊥)| is monotone

increasing with respect to λ̄ =
v⊤
⊥Av⊥
v⊤
⊥v⊥

.

Proof. If ℓc(ρ, v⊥) ̸= 0 in (17) then, |ℓ(ρ, v⊥)| =√
ρv⊤

⊥(A+D)v⊥

2v⊤
⊥∆v⊥

=
√

ρ(λ̄+k)
2(1+ρk) , which is monotone increasing

with respect to λ̄. �

Now we are ready to prove the main result of this section.

Proof of Theorem 5. For a k-regular graph, in the light
of Corollary 9, Lemma 10 and Lemma 11 we have

ρ⋆1 := argmin
ρ

s(ρ) = argmin
ρ

max
v,v⊤1n=0

|ℓk(ρ, v)| = 1√
k2 − l2

.

where l := λn−1(A). Moreover, by replacing the value ρ⋆1
and v⋆⊥ := argmax

v⊤1n=0

v⊤Av
v⊤v

in (17) the magnitude |ℓ(ρ⋆1, v⋆⊥)|

becomes

|ℓ(ρ⋆1, v⋆⊥)| =
1

2
+

ρ⋆1l

2(1 + ρ⋆1k)
.

Moreover, from (21) we conclude that |ℓ(ρ,1n)| =

{1, ρk
1+ρk}. We use (22) to obtain the optimal step-size

ρ⋆ := argmin
ρ

max{s(ρ), ρk
1+ρk}. Since ρ⋆1 is the minimizer

of s(ρ) over ρ, if we show that |ℓ(ρ⋆1, v⋆⊥)| ≥ |ℓ(ρ⋆1,1n)|,
then we have proved that ρ⋆ = ρ⋆1. By forming the afore-
mentioned inequality we get

1− ρ⋆1(2k − l)

1 + ρ⋆1k
≥ 0.

Setting ρ⋆1 = 1√
k2−l2

in the above inequality we conclude

k − l ≤
√
k2 − l2, and l(l − k) < 0. So we have ρ⋆ = ρ⋆1 =

1√
k2−l2

. �

In what follows we discuss how ρ⋆ varies with the size of
k-regular graphs and provide empirical rules for choosing
a good step-size. Complete graphs with n ≥ 3 nodes are
k-regular with k = n−1 and l = λn−1(A) = −1. Thus, the
optimal step-size is computed to be ρ⋆ = 1√

n(n−2)
. There-

fore, ρ⋆ tends to zero as the number of nodes increases.

Next we consider ring networks with n nodes and k = 2.
For large number of nodes λn−1(A) tends to λn(A) = k,
i.e., l

k → 1, and ρ⋆ grows significantly.

The above statements indicate that one should select small
step-sizes for highly connected graphs and large step-sizes
for very sparse graphs. Additionally, there exists a vast
amount of results concerning the bounds on l = λn−1(A)
for generic k-regular graphs. Among all of them Quenell
(1996) suggests the following lower bound

l > 2
√
k − 1 cos(

π

r + 1
) (24)

where k ≥ 3 , r = ⌊ d̄
2⌋ and d̄ is the diameter of the graph.

For large k-regular graphs Friedman (2004) specifies that
l < 2

√
k − 1 + ϵ. Applying these results to large k-regular

networks one can then approximate λn−1(A) by 2
√
k − 1

and use ρ⋆ = 1
k−2 for k > 2 as a reasonable guess for the

optimal step-size.

5. ℓ1-REGULARIZED LOSS MINIMIZATIONS

Consider the following quadratic loss minimization prob-
lem plus a ℓ1 penalty function

minimize
1

2
x⊤Qx+ q⊤x+ δ∥z∥1

subject to x = z,
(25)

where Q ∈ Sn+, x, q, z ∈ Rn and δ ∈ R+ is constant.
We formulate ADMM algorithm for this problem with the
following change of variable u = 1

ρµ. Remember ρ and

µ are the ADMM constant step-size and Lagrangian vari-
able corresponding to the equality constraint, respectively.
Augmented Lagrangian can be written as

La(x, z, u) =
1

2
x⊤Qx+ q⊤x+ δ∥z∥1 +

ρ

2
∥x− z + u∥22.

(26)

The algorithm becomes

xk+1 = argmin
x

{1
2
x⊤Qx+ q⊤x+

ρ

2
∥x− zk + uk∥22}

zk+1 = argmin
z

{δ∥z∥1 +
ρ

2
∥xk+1 − z + uk∥22}

uk+1 = uk + xk+1 − zk+1.

Note that z iterations are the proximity operator for the
ℓ1 norm. More precisely, we have

Proxh(x) = argmin
v

(
h(v) +

1

2
∥v − x∥22

)
.

By applying the above definition for the function h(x) =
δ∥x∥1, we get a component-wise analytic solution for x
which is called soft thresholding and is (see Boyd et al.
(2011) for details)

Proxh(x)i = Sδ(x) =

{
xi − δ xi ≥ δ
0 |xi| ≤ δ
xi + δ xi ≤ −δ.



Hence, we obtain

xk+1 = (Q+ ρI)−1
(
−q + ρ(zk − uk)

)
zk+1 = Sδ/ρ(x

k+1 + uk)

uk+1 = uk + xk+1 − zk+1.

(27)

Iterations (27) are non-linear, and the rigorous analysis
of this algorithm to obtain the optimal step-size ρ⋆ is
identified as a future research problem. However, later in
Section 6.3, we empirically offer some insights on different
choices of the step-size ρ.

6. NUMERICAL EXAMPLES

In this section we conduct numerical examples to evaluate
our step-size selection results.

6.1 ℓ2-Regularized quadratic programming

Fig. 2 compares the convergence factor of ADMM for
varying δ. We have considered two step-size selections:
ρ = δ and ρ = ρ⋆ obtained from (6). TheQmatrix is highly
ill-conditioned with λ1(Q) ∼ 41.3 and λn(Q) ∼ 1.9 ×
103. For comparison, the dashed-dotted curve shows the
optimal convergence factor of the gradient iterations for
the problem, i.e.

xk+1 = xk − α(Qxk + q + δxk),

where α < 2/λn(Q) is a constant step-size. For this
problem, since the cost function is quadratic and its
Hessian f ′′ = Q + δI is bounded between l = λ1(Q) + δ
and L = λn(Q) + δ, the optimal step-size is α⋆ = 2

l+L

and the convergence factor is given by q⋆ = L−l
L+l =

λn(Q)−λ1(Q)
λn(Q)+λ1(Q)+2δ (Polyak (1987)). The figure illustrates the

robust convergence properties of the ADMM method, and
how it outperforms the gradient for small δ (ill-conditioned
problem). We can also observe that the simple gradient
method has better convergence factor as δ grows large
(i.e. when regularization makes the overall problem well-
conditioned).
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Fig. 2. Performance of ADMM for ℓ2 regularized minimiza-
tion.

6.2 Consensus on k-regular graphs

In this section we compare the convergence factor of the
consensus iterations (11) with the optimal constant step-
size ρ⋆ against the standard consensus algorithm pre-
sented in Xiao & Boyd (2004) and an alternative ADMM
technique for consensus applications recently proposed
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Fig. 3. Performance comparison of optimal ADMM consen-
sus algorithm for {2, 6}-regular graphs with standard
algorithm and state of the art Erseghe et al. (2011)
ADMM iterations with localized augmentation con-
stant.

in Erseghe et al. (2011). As an indicator of the convergence
factor, we consider the second largest eigenvalue of the
corresponding consensus matrices in linear iterations of the
form x(t+ 1) = Wx(t). Fig. 3 presents the second largest
eigenvalue versus the number of nodes n ∈ [10, 100] for
randomly generated regular topologies.

The algorithm corresponding to the solid curve captioned
by ADMM is implemented via using ρ⋆ in (18) as the
constant step-size, while the algorithm given in Erseghe
et al. (2011) (annotated as ADMM-localized step-size) uses
the optimal relaxed localized augmentation constants pro-
posed by the respective authors. More precisely, this algo-
rithm considers the symmetric matrix C ∈ Rn×n to be the
augmentation constant (step-size) matrix. Additionally, it
is assumed that C is doubly stochastic. The authors in
Erseghe et al. (2011) propose an optimal constant tuning
parameter which minimizes the convergence factor of the
algorithm. As for the standard consensus algorithm, we use
Metropolis-Hasting ( Xiao & Boyd (2004)) weight matrix
as the augmentation matrix C in Erseghe et al. (2011).
For a k-regular graph this matrix coincides with constant
weights since both assign 1

k for each edge (i, j) ∈ E (see,
Xiao & Boyd (2004)). This is a fair comparison since all the
three algorithms need similar initialization steps. Although
our proposed algorithm does not need a weight matrix,
it uses the adjacency matrix A and degree matrix D of
the graph, which contain the same amount of information
available to the other two algorithms.
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Fig. 4. Performance comparison of optimal ADMM con-
sensus algorithm with standard algorithm and state
of the art Erseghe et al. (2011) ADMM iterations with
localized augmentation constant. The network of size
n = [10, 100] is randomly generated by Erdős-Rényi
graphs with densities ϵ = {0.3, 0.7}.

For each point in Fig. 3, the simulation is repeated for
10 random graphs with the same number of nodes and
the average result is plotted. The plots show that both
ADMM iterations offer faster convergence when compared
to the standard case (specially for larger n). Furthermore,
the convergence factor for the two ADMM alternatives are
exactly equal in all the simulations. It is not surprising if
we note that in k-regular graphs all the nodes have the
same degree, hence they will have the same augmentation
constant in the localized algorithm (Erseghe et al. (2011))
which, in turn, coincides with our optimal step-size.

Fig. 4 depicts the performance comparison for the same
algorithms for randomly generated Erdős-Rényi graphs,
which may not be regular. According to this algorithm,
each component (i, j) in the adjacency matrix A is set

to 1 with probability p = (1 + ϵ) log(n)n , where ϵ ∈ (0, 1)
and n is the number of vertices. For the ADMM algorithm
we calculate the constant step-size in (18) with k taken
as the average degree of the graph. For each point of
the plot, we have repeated the simulations for 100 times
and the value of second largest eigenvalues are the mean
value of corresponding random graphs with the same
number of vertices and edge-density. Results show that
in all the cases our sub-optimal constant step-size ADMM
outperforms the method proposed by Erseghe et al. (2011)
using the optimal localized step-sizes. These simulation
results motivate us to investigate the problem of optimal
step-size selection for general graphs as future work.
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Fig. 5. log scale of ∥x − x⋆∥22 versus the number of
iterations t for the quadratic programming with ℓ1
regularization. Different choices of penalty constant δ
and step-size ρ are plotted.

6.3 ℓ1-Regularized loss minimizations

Fig. 5 illustrates the convergence properties of ℓ1-regularized
ADMM algorithm for different choices of the step-size ρ.
We simulate (25) with a randomly generated Q ∈ S50+ .
The exhaustive iterations have been initialized to find the
optimal point x in (27) for each setting of δ. Based on our
initial simulation results, for the case where δ < λ1(Q),
ρ = λ1(Q) is a reasonable selection which accelerates the
convergence of (27). Moreover, when λ1(Q) < δ < λn(Q),
ρ = λn(Q) offers better performance while for δ > λn(Q)
the proper step-size choice is ρ = δ.

7. CONCLUSIONS AND FUTURE WORK

In this paper, we studied the optimal step-size selection
for the alternating direction method of multipliers. In



particular, we investigated three different problem formu-
lations: ℓ2-regularized quadratic programming, ADMM-
based consensus on k-regular graphs, and ℓ1-regularized
quadratic programming. We demonstrated both theoret-
ically and numerically the optimal step-size selection for
ℓ2-regularized quadratic programming and consensus, and
compared these with existing methods. Via simulations,
we assessed suitable step constant for the ℓ1-regularized
estimation problem. As a future work, we plan to develop
analytical results for the ℓ1-regularized problem and ex-
tend our results for k-regular graphs to general graphs.
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