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Abstract— In this paper, we have proposed a technique for
Bayesian sequential detection of replay attacks on networked
control systems with a constraint on the average number
of watermarking (ANW) events used during normal system
operations. Such a constraint limits the increase in the control
cost due to watermarking. To determine the optimal sequence
regarding the addition or otherwise of watermarking signals,
first, we formulate an infinite horizon stochastic optimal control
problem with a termination state. Then applying the value
iteration approach, we find an optional policy that minimizes
the average detection delay (ADD) for fixed upper bounds on
the false alarm rate (FAR) and ANW. The optimal policy turns
out to be a two thresholds policy on the posterior probability
of attack. We derive approximate expressions of ADD and
FAR as functions of the two derived thresholds and a few
other parameters. A simulation study on a single-input single-
output system illustrates that the proposed method improves
the control cost considerably at the expense of small increases
in ADD. We also perform simulation studies to validate the
derived theoretical results.

I. INTRODUCTION

Safety and security issues associated with cyber-physical
systems (CPS) must be addressed before the widespread
adoption of CPS for safety-critical applications. CPS are
vulnerable to adversarial attacks on both, the cyber-layer
and the physical-layer [1]. Defence mechanisms employed to
protect the cyber-layer against adversarial attacks may not be
adequate to protect the system against attacks on the physical
layer [2]. Attackers may take different strategies to launch
adversarial attacks on CPS. In one approach, the attacker
may jam the wireless channel of a networked control system
(NCS), and prevent the controller from receiving the required
observations. Such an attack is called denial of service (DoS)
attack [3]. In another approach known as a deception attack,
the attacker may feed wrong or fake information to the
system to cause some damage [4]. One particular case of
such attacks is the replay attack [5], [2], [6], where the
attacker first records the true observation from the system,
and then replaces the true observation with the recorded
data at some later point in time. The statistical similarity of
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the recorded data with true observation makes the detection
of the replay attack a challenging task. The attacker may
inject the system with harmful exogenous inputs and remain
stealthy during the replay attack. The use of off-the-shelf
networking components, commodity software, etc. makes
CPS vulnerable to such attacks [2]. One of the most studied
incidents of replay attacks is the Stuxnet attack, which took
place in a uranium enrichment plant in Iran [7]. Attackers
exploited a particular vulnerability of a commodity software
to alter the control inputs to increase the speed of the
centrifuges, which in turn increased the pressure beyond the
safety limits. Attackers also launched the replay attack during
the alteration of the control inputs to remain stealthy. Attacks
on CPS may cause a serious threat to the reliability and
availability of such systems, which may also cause monetary
loss and threat to human safety [8]. Therefore, the detection
of such attacks as early as possible is of utmost importance.

The literature is quite rich with methods for replay at-
tack detections. One widely adopted approach is to add
watermarking either to the control inputs or to the obser-
vations before the transmission. The presence of the attack
is checked by various statistical tests at the controller or
receiver end. In [2], [5], [6], the watermarking was added to
the control inputs and the χ2 statistics is generated using
the innovation signal from a Kalman state estimator to
perform a threshold check for the replay attack detection.
A similar watermarking scheme is followed in [9], [10], but
test statistics are generated directly using observations. The
addition of the watermarking increases the detectability of
the attack, which in turn reduces the detection delay [2].
On the other hand, the addition of watermarking increases
the control cost [2]. Since attacks are infrequent events,
the watermarking scheme increases the total control cost
significantly. In [11], a periodic watermarking scheme is
designed by keeping a balance between the control cost
and detection delay. In a different approach of adding wa-
termarking to the observations, the added watermarking is
filtered out before feeding the received observations to the
controller. Therefore, such an approach does not increase
the control cost. The added watermarking signal could be of
different types, sinusoidal [12], time-varying sinusoidal [13],
random noise [14], multiplicative type [15], etc. However, in
the scenario, where the attacker hijacks the sensor node and
feeds false or previously recorded observations before the
addition of the watermarking, such detection mechanisms
may fail.

In this paper, we have studied the problem of sequential
detection of replay attacks with a constraint on the average
number of watermarking (ANW) added before the attack.



During the normal system operation, the addition of wa-
termarking increases the control cost, which is limited by
the constraint on the ANW. We have explored the Bayesian
approach of sequential change-point detection, which was
first introduced by Shiryaev in 1963 [16], for the replay
attack detection by assuming a prior distribution of the
attack start point. The Shiryaev procedure is asymptotically
optimum under certain conditions [17]. In [17], analytical
approximate expressions of the detection delay and false
alarm rate (FAR) are derived provided the prior distribution
of the change point satisfies either of the following two
conditions,

lim
k→∞

log P {Γ ≥ k + 1}
k

= −c, c ≥ 0, (1)

where Γ is the change point. Similar to the several other
literature on change-point detections [18], [19], we have
also assumed the distribution of the change point Γ to be
a geometric distribution with parameters ρ, which obeys
the condition in (1). However, some other prior distribu-
tion satisfying (1) can also be used. We first formulate a
stochastic optimal control problem with an infinite horizon
cost function and a termination state. The optimal policy,
that will minimize the average detection delay (ADD) with
constraints on both, FAR and ANW, is derived by solving
Bellman’s equation using value iterations [20]. The optimal
policy is found to be a two thresholds (Ths and Thd)
policy on the posterior probability of attack, pk. We derive
approximate expressions of the ADD and FAR as functions
of the thresholds and a few other parameters for the replay
attack detection problem. We have performed simulations
using a single-input single-output (SISO) NCS to illustrate
the efficacy of the proposed method and the derived theories.
Our work in this paper is inspired by the two other prior
works, quickest intrusion detection using an optimal set of
active sensors in [18], and quickest change detection using
on-off observation control in [19].

The rest of the paper is organized as follows. Section II
illustrates the system model and the replay attack mechanism
assumed in this paper. Section III formulates and solves
the stochastic optimal control problem. The approximate
analytical expressions of ADD and FAR are derived in
Section IV. Section V provides the simulation results and
discusses them. Section VI concludes the paper.

II. SYSTEM MODEL AND REPLAY ATTACK STRATEGY

This section discusses the system model before and after
the replay attack and the replay attack strategy adopted for
this paper.

A. System model before the attack

Fig. 1: Block diagram of the system before the attack.

A block diagram of the NCS before the attack is shown in
Fig. 1. We consider a linear time-invariant SISO system for
illustrative purposes. The extension of the proposed method
for the general multi-input multi-output (MIMO) system is
being considered in an extended version of this paper.

The state and observation equations for the system are

xk = Axk−1 +Buk−1 + wk−1, and (2)
yk = Cxk + vk, (3)

where xk ∈ IR, uk ∈ IR, and yk ∈ IR are the state variable,
control input, and observation at the k-th instant in time,
respectively. wk ∈ IR and vk ∈ IR are independent and
identically distributed (iid) process and observation noise,
respectively. Also, w ∼ N (0, Q), where Q ∈ IR, and
w ∼ N (0, R), where R ∈ IR. N (µ, σ2) denotes a normal
distribution with mean µ and variance σ2. It is assumed that
wk and vk are uncorrelated with each other, and both are
uncorrelated with the initial state x0. A ∈ IR, B ∈ IR,
and C ∈ IR. We estimate the state of the system using
the Kalman estimator. The predicted state x̂k|k−1, and the
filtered state x̂k|k from the Kalman filter (KF) are given as,

x̂k|k−1 , E [xk|Ψk−1] = Ax̂k−1|k−1 +Buk−1, (4)

x̂k|k , E [xk|Ψk] = x̂k|k−1 +Kγk, (5)

where Ψk is the set of all measurements up to time k, and
E[·] denotes the expected value. The innovation signal γk
and the Kalman gain K take the following forms,

γk = yk − Cx̂k|k−1, and (6)

K = CP
(
C2P +R

)−1
. (7)

Here, P = E
[
(xk − x̂k|k−1)2

]
is the steady state error

covariance. We have assumed that the system is operational
for a long time (say, k = −∞) and the system is currently
(k ≥ 0) at steady-state. At steady-state, P becomes the
solution to the following algebraic Riccati equation,

P = A2P +Q−A2C2P 2
(
C2P +R

)−1
. (8)

The control input is generated using a linear quadratic Gaus-
sian (LQG) controller by minimizing the following infinite
horizon average cost.

Jlqg = lim
T→∞

E

[
1

2T + 1

T∑
k=−T

(
Wx2k + Uu2k

)]
. (9)

Here, W ∈ IR > 0 and U ∈ IR > 0. The optimal input u∗k
becomes a fixed gain linear function of the estimated state
as,

u∗k = Lx̂k|k, and (10)

L = −ABS/
(
B2S + U

)
. (11)

Here, S is the solution to the following algebraic Riccati
equation,

S = A2S +W −A2B2S2
(
B2S + U

)−1
. (12)



B. System model during Replay attack

For the replay attack model considered in this paper, the at-
tacker does not need to have any knowledge about the system
or controller parameters. However, the attacker can hack the
sensor nodes and can record and replace true observations,
but the attacker does not know the instantaneous values
of the adding watermarking signal. Therefore, to launch
a replay attack, the attacker replaces the true observation
yk by the fake data zk = yk−k0 at k = Γ, where k0
represents the delay. As mentioned before, the attack start
point Γ is assumed to have a geometric prior distribution
with parameter ρ, and 0 < ρ < 1. Therefore, the probability
πk = P {Γ = k} takes the following form,

πk = ρ (1− ρ)
k−1

1{k≥1}, (13)

where 1 is the indicator function. We also assume that the
probability of the attack starting before the time instant k = 1
is zero. A block diagram of the system under the replay
attack is shown in Fig. 2. A similar attack model is studied
in many literature [2], [11], and also, there are reported
incidents, such as the Stuxnet attack [7].

Fig. 2: Block diagram of the system during replay attack.

III. PROPOSED REPLAY ATTACK DETECTION
MECHANISM

In this section, we first present the proposed replay attack
detection scheme with parsimonious watermarking in Sub-
section III-A and III-B. In the subsequent subsections, we
discuss the key aspects of the proposed strategy.

A. Proposed Parsimonious Watermarking Policy

The formal definitions of ADD and FAR are given as
follows [19],

ADD , E1 [τ − Γ|τ ≥ Γ] , (14)

FAR , P0 {τ < Γ} (15)

Here, τ is the time instant when the attack is detected by
some hypothesis testing. P0 and P1 denote the probability
measures before and after the attack, respectively. E1[·]
denotes the expected value with respect to the probability
measure P1. As discussed in [2], the detectability increases,
i.e., ADD reduces if we add watermarking to the control
input. However, the addition of watermarking increases the
control cost. If an iid watermarking ek ∼ N

(
0, σ2

e

)
is added

to the optimal LQG control input u∗k for all the time instants
then the increase in the control cost during the normal system
operation is given by [4],

∆LQGA =

(
U +B2

(
W + L2U

) [
1− (A+BL)

2
]−1)

σ2
e .

(16)
Therefore, we want to detect replay attacks with minimum
ADD for a fixed upper bound on FAR and at a lower LQG

cost by a parsimonious watermarking policy. We consider
a parsimonious watermarking policy based on the derived
posterior probability of attack pk , P {Γ ≤ k|Ik}, where Ik
is the set of all available information up to the k-th instant of
time. We define the variable average number of watermarking
(ANW) used before the attack start point as follows,

ANW , E0 [Ne] , (17)

where E0 [·] denotes the expectation with respect to the
probability measure P0, and Ne is the number of times the
watermarking is added before the attack start point. Now, our
final objective is to find a detection policy that will minimize
the ADD for fixed upper bounds on FAR and ANW. The
upper bound on the ANW will in turn limit the increase
in the control cost due to the addition of the watermarking
during the normal system operation. After the attack start
point, our primary objective is to detect the attack as soon
as possible to minimize the damage to the CPS, and we are
not concerned about the increase in the control cost due to
the watermarking. We define the control variable sk, see (18),
to control the watermarking addition process.

sk−1 =

{
0, no watermarking added to u∗k
1, watermarking added to u∗k

(18)

The control input under the proposed watermarking scheme
will be as follows,

uk = u∗k + sk−1ek. (19)

B. Proposed Replay Attack Detection Scheme

Figure 3 illustrates the proposed scheme in a block dia-
gram. The method is provided systematically in the following
steps.

Fig. 3: Schematic diagram of the system with the proposed
watermarking scheme.

Step 1: We evaluate the value of the posterior probability of
attack, pk. Sub-section III-D discusses the derivation of pk
in detail.
Step 2: We compare pk with two thresholds Ths and Thd,
Thd ≥ Ths, as follows.

if pk < Ths then
No watermarking is added and Hypothesis H0 se-

lected.
else if pk ≥ Ths & pk < Thd then

Added watermarking in next instant and Hypothesis
H0 selected.
else if pk ≥ Thd then

No watermarking is added and Hypothesis H1 se-
lected.
end if



Here the hypothesis H0 denotes normal system operation,
whereas H1 denotes that the system is under replay at-
tack. Thresholds Ths and Thd are evaluated by minimizing
ADD for the fixed upper bounds on FAR and ANW. Sub-
section III-C formulates the optimization problem, and the
solution method is discussed in Sub-section III-E.

C. Optimization Problem Formulation

To formulate the stochastic optimal control problem, we
define the following state variable θk and another control
variable dk.

θk =


0 Normal system operation,
1 System under replay attack,
Te Replay attack detected, process terminated.

(20)

dk =

{
0, Hypothesis H0 selected
1, Hypothesis H1 selected.

(21)

Now, we state the optimization problem as,

min
ud∈U

ADD

s.t. FAR ≤ FARth
ANW ≤ ANWth,

(22)

where FARth and ANWth are the user defined thresholds.
ud,k denotes the control action at the k-th time instant. The
relationship between ud,k, and sk and dk, and the the set of
permissible actions, i.e., U are given in Table I. To illustrate
it further, for example, if the control action ud,k = 2 is
selected, then the corresponding decision variables will be
sk = 1 and dk = 0.

TABLE I: U
ud,k dk sk

1 0 0
2 0 1
3 1 0

The constrained optimization problem of (22) is transformed
into an unconstrained one using the Lagrangian multipliers
λe and λf , see (23).

J∗ = min
ud∈U

ADD + λfFAR+ λeANW. (23)

ADD, FAR and ANW can be represented using the defined
control and state variables as follows,

ADD = E

[
τ∑
k=1

1{θk=1}1{dk=0}

]
, (24)

FAR = E

[
τ∑
k=1

1{θk=0}1{dk=1}

]
, and (25)

ANW = E

[
τ∑
k=1

1{θk=0}1{dk=0}1{sk=1}

]
. (26)

The posterior probability of attack, pk, can also be
represented as pk = E

[
1{θk=1} | Ik

]
applying the

Radon–Nikodym theorem [21]. Here, Ik denotes the set of
all the required information upto the k-th time instant. Now,
using (24)-(26) and pk, we can rewrite the cost function of

(23) as the following infinite horizon cost function with a
termination state [19].

J∗ = min
ud∈U

τ∑
k=1

gk (pk, ud,k) , (27)

where gk (pk, ud,k) is the expected per stage cost given as,

gk (pk, ud,k) =pk1{dk=0} + λf (1− pk)1{dk=1}

+ λe (1− pk)1{sk=1}1{dk=0}.
(28)

As per the theory studied in [22], the optimal policy found
by solving (27) using dynamic programming value iterations
will also be the solution to the original constrained problem
(22).

D. Derivation of the posterior probability of attack, pk

The posterior probability of attack, pk, is derived using
the joint distribution of the innovation signal and the water-
marking signal, before and after the replay attack as given
in Lemma 1.

Lemma 1: The posterior probability of the attack, pk, for
the proposed watermarking scheme follows the following
recursion,

pk+1 =

{
TmL(γk+1)

TmL(γk+1)+1−Tm
if sk = 0

TmL(γk+1,ek)
TmL(γk+1,ek)+1−Tm

if sk = 1
, (29)

where Tm = pk + (1− pk) ρ. L (γk+1) and L (γk+1, ek) are
the likelihood ratios as given below,

L (γk+1) =
f̃ (γk+1)

f (γk+1)
, and (30)

L (γk+1, ek) =
f̃ (γk+1, ek)

f (γk+1, ek)
, (31)

where f (·) and f̃ (·) denote the likelihoods before and after
the attack, respectively.

Proof: The proof makes use of the recursion formula
for Shiraev statistics Rk (32) and the relation between pk
and Rk (33) [21],

Rk = (1 +Rk−1)Lk, (32)

pk =
Rk

Rk + 1/ρ
, (33)

where Lk denotes the likelihood ratio using the k-th data
sample. Recalling that the likelihood ratios (30) and (31)
correspond to sk = 0 and sk = 1, respectively, and applying
(30)-(33), we obtain the recursion (29).

The distributions of the test data, before and after the
replay attack, remain zero-mean Gaussian. Therefore, we
have only derived the required variances for f (·) and f̃ (·)
as follows. The innovation signals before and after the replay
attack take the following forms,

γk =

{
CA

(
xk−1 − x̂k−1|k−1

)
+ Cwk−1 + vk, k < Γ

zk − C (A+BL) x̂k−1|k−1 − CBsk−2ek−1, k ≥ Γ
(34)

Therefore, the innovation signal before the attack is uncor-
related to the watermarking signal, but after the attack they



become correlated. The distributions of γk and ek−1, before
and after the replay attack are provided in the following
lemma.

Lemma 2: For the system model and attack strategy given
in Section II, the distributions of the innovation signal γk,
and the joint distributions of the innovation signal γk and the
watermarking signal ek−1, before and after the replay attack,
take the following forms,

γk ∼

{
f (γk+1) = N

(
0, σ2

γ

)
, k < Γ

f̃ (γk+1) = N
(

0, σ2
γ̃

)
, k ≥ Γ

, and (35)

{γk, ek−1} ∼

{
f (γk+1, ek) = N (0,Σγe) , k < Γ

f̃ (γk+1, ek) = N (0,Σγ̃e) , k ≥ Γ
, (36)

where

Σγe =

[
σ2
γ 0

0 σ2
e

]
, (37)

Σγ̃e =

[
σ2
γ̃ −BCσ2

e

−BCσ2
e σ2

e

]
, (38)

σ2
γ = C2P +R, (39)

σ2
γ̃ =

(
1 +

C2K2 (A+BL)
2

1−A2

)
σ2
y+(

2KAC2 (A+BL)
2

1−A2
− 2C (A+BL)

)
Ex̂z (−1)

+

(
B2 (1−KC)

2
µ̃s

1−A2
+ C2B2

)
σ2
e , and (40)

σ2
y = C2P +R+

C2K2 (A+BL)
2 (
C2P +R

)
1− (A+BL)

2

+

(
C2B2µs +

B2µs

1− (A+BL)
2

)
σ2
e . (41)

Here, A = (1− CK) (A+BL), µs = E0[sk], and µ̃s =
E1[sk]. The expression of Ex̂z (−1) is provided in Lemma 3.

Proof: The proof of Lemma 2 is provided in Ap-
pendix I.

Remark 1: Since there is no constraint on the usage of
watermarking after the attack start point, we assume µ̃s to
be 1. On the other hand, there is an upper bound on the
ANW, i.e., ANWth. Therefore, the range of µs will be 0 ≤
µs ≤ ρANWth. The expectation of the attack start point Γ
with respect to the prior distribution is ρ−1.

Lemma 3: For the system model and attack strategy given
in Section II, the correlation between the estimated state
x̂k−1|k−1 after the replay attack and the attack signal zk
will be as follows,

Ex̂z(−1) =

∞∑
i=0

AiKCaAi+1
a Exa(0)CTa , (42)

where Exa(0) is the solution to the following Lyapunov
equation,

Exa
(0) = AaExa

(0)ATa +Qa, and (43)

Aa =

 A+BLKC BL(1−KC) BLK
(A+BL)KC (A+BL)(1−KC) (A+BL)K

0 0 0


(44)

Ca =
[
C 0 1

]
(45)

Qa =

B2σ2
eµs +Q B2σ2

eµs 0
B2σ2

eµs B2σ2
eµs 0

0 0 R

 (46)

Proof: The proof of Lemma 3 is provided in Ap-
pendix II.

Remark 2: Aa and Aa both are assumed to be strictly
stable. Therefore, the summation of (42) will converge to a
finite number as i→∞. We estimate the value of Ex̂z(−1)
by taking a large i for which the rest of the terms in the
summation become negligible.

E. Deriving The Optimal Policy, u∗d
We have solved the optimization problem of (27) applying

value iteration [20] in the following steps.
Step-1: pk, λf , λe, and µs are discretized, see Table II.

TABLE II: Discretization

Name Range Discrete levels
pk 0 ≤ pk ≤ 1 Np
λf 0 < λf ≤ λf,max Nλf

λe 0 < λe ≤ λe,max Nλe

µs 0 ≤ µs ≤ ρANWth Nµs

Step-2: Using Monte-Carlo (MC) simulations, the state
transition matrices Pne and Pe are estimated of-
fline, where [Pne]ij = P {pk = j|pk = i, sk−1 = 0},
[Pe]ij = P {pk = j|pk = i, sk−1 = 1}, and i, j =
1, 2, · · · , Np. Here [·]ij denotes the i-th row and j-th
column element in a matrix.

Step-3: For each grid point in the combined search space
of λe, λf and µs, the optimal policy u∗d is derived using
the following value iteration.

Tk+1J = min
ud∈U

[
g (ud,k) + Pne

[
TkJ

]
1{dk=0}1{sk=0}

+Pe
[
TkJ

]
1{dk=0}1{sk=1}

]
, (47)

where T denotes the transformation operator. J and
g (ud,k) are as follows

J =
[
J(1) J(2) · · · J(Np)

]T
, (48)

g (ud,k) =
[
g (1, ud,k) g (2, ud,k) · · · g (Np, ud,k)

]T
.

(49)

J(i) represents the cost function value when the dis-
cretized initial state p0 is i. g (i, ud,k) is evaluated using
(28) after replacing the state i with a corresponding
value of pk ∈ IR.

Step-4: ADD, FAR and ANW are estimated for every
grid point in the search space with the correspond-
ing optimal policy u∗d using MC simulations, and the
suitable values for λf , λe, and µs are selected which
satisfy the given constraints, i.e., FAR ≤ FARth and
ANW ≤ ANWth.



Remark 3: We have studied several SISO models and
found that the optimal policy u∗d is a two thresholds policy,
Ths and Thd, Ths ≤ Thd, on pk. According to the policy,
sk = 1 is selected if pk ≥ Ths, and dk = 1 is decided if
pk ≥ Thd.

Remark 4: A more systematic way of finding the optimal
values of λe, λe and µs for the given FARth and ANWth

is currently being investigated.

IV. APPROXIMATE ANALYTICAL EXPRESSIONS OF ADD
AND FAR

To derive asymptotic approximate expressions of ADD
and FAR for the replay attack detection problem under study,
pk is transformed to Zk [19], see (50), so that when pk → 1,
Zk →∞.

Zk = log
pk

1− pk
(50)

Similarly, ThS = log Ths

1−Ths and ThD = log Thd

1−Thd . Using
(29) and (50), the recursion equation of Zk can be written
as

Zk+1 = Zk + | log(1− ρ)|+ log (1 + ρ exp (−Zk)) (51)
+ 1{Zk<ThS} log L (γk+1) + 1{Zk≥ThS} log L (γk+1, ek)

Lemma 4: The variable Zn, i.e., Zn = log pn
1−pn , can be

written as the summation of two terms, Sn and ln, see (52),
where Sn is a ladder variable, see (53), and ln is a slowly
changing variable in the sense defined in [23], see (54).

Zn = Sn + ln (52)

Sn =

n∑
k=1

log L (γk+1, ek) + n| log(1− ρ)| (53)

ln =

n−1∑
k=1

log (1 + ρ exp (−Zk)) +

n∑
k=1

1{Zk<ThS} log L (γk+1)

−
n∑
k=1

1{Zk<ThS} log L (γk+1, ek) + log (exp (Z0) + ρ)

(54)
Proof: The proof of Lemma 4 is provided in Ap-

pendix III.
Exploiting the special structure of Zn as given in Lemma 4,
and applying the analyses from [17], [19], we can get the
following approximate asymptotic expressions of ADD and
FAR.

ADD → ThD + r̄ − l̄

D
(
f̃ (γk+1, ek) , f (γk+1, ek)

)
+ | log(1− ρ)|

,

(55)

and FAR→ ξ

exp(ThD)
, as ThD →∞, (56)

where r is the overshoot, r , Sη − ThD. η is
the stopping time, η , inf

{
n ≥ 1 : Sn ≥ ThD

}
. r̄ =

E1 [r], l̄ = limn→∞ E1 [ln], and ξ = E1 [exp(−r)].
D
(
f̃ (γk+1, ek) , f (γk+1, ek)

)
denotes the Kullback Leibler

divergence (KLD) measure between the distributions af-
ter and before the replay attack. For the current problem

D
(
f̃ (γk+1, ek) , f (γk+1, ek)

)
will take the following form

[4],

D
(
f̃ (γk+1, ek) , f (γk+1, ek)

)
= 0.5

(
σ2
γ̃

σ2
γ

− 1− log

(
σ2
γ̃ − C2B2σ2

2

σ2
γ

))
(57)

Remark 5: There are no closed-form analytical expres-
sions of r̄, l̄ and ξ available for the replay attack detection
problem under study. We have estimated those values by
MC simulations. ADD expression in (55) can be further
approximated by ignoring the terms r̄ and l̄ as,

ADD ≈ ThD

D
(
f̃ (γk+1, ek) , f (γk+1, ek)

)
+ | log(1− ρ)|

.

(58)

V. NUMERICAL RESULTS

We have performed simulation studies to illustrate the
proposed method and validate the theoretical results. An
open-loop unstable SISO system is used for the simulation
studies with the following parameters, A = 1.1, B = C =
R = Q = W = 1, U = 0.4, ρ = 0.01, Np = 50,
Nλf

= 100, Nλe
= 100, Nµs

= 10, λf,max = 1000,
and λe,max = 1. The proposed method is compared with
a method where watermarking is always present, which is
referred to as Method-A.

Figure 4a shows a plot of the optimal policy u∗d with
respect to pk for a set of fixed values of λf , λe, and µs.
So, for the example test case of Fig. 4a, the optimal policy
is a two threshold policy on pk.

Figure 4b plots pk, and the two control variables sk and
dk from a test run with the optimal policy given in Fig. 4a.
It can be observed that the watermarking is added only for
a few instances when pk ≥ Ths. But after the attack point,
the watermarking is added more frequently compared to the
time before the attack.

(a) (b)

Fig. 4: Trial run, (a) Optimal policy u∗d vs. pk plot, (b) Plot
of sk, dk and pk for a random test run.

Figure 5 plots the ADD and FAR (%) vs. σ2
e for the

proposed method. ADD and FAR are derived from MC
simulations. The plots are shown for two different values of
λe while keeping λf and µs fixed. Figure 6a and Figure 6b
plot the same variables as in Fig 5 for the case where λf and
µs are changed, respectively, keeping the other two variables
fixed.



Fig. 5: ADD and FAR (%) vs. σ2
e plots for two different λe.

λf = 100 and µs = 0.05.

(a) (b)

Fig. 6: ADD and FAR (%) vs. σ2
e plots , (a) two different

λf . λe = 0.3 and µs = 0.05, (b) two different µs. λe = 0.3
and λf = 200.

From Fig. 5 - Fig. 6b, we can have the following obser-
vations. ADD and FAR increases with the increase in λe.
If we increase λf then the FAR reduces at the expense of
ADD. It seems, µs does not have any major effect on ADD
and FAR as long as it is small. By a grid search, we can
find proper values of λe for each σ2

e that will give the ANW
which will match with the prior assumption of µs. Figure 7
plots the ADD and FAR (%) vs. σ2

e for the proposed method,
where ADD and FAR are estimated form MC simulations
and derived approximate expressions (55), (58) and (56). The
approximation of (58) gives poor accuracy compared to (55),
but it does not need the r̄ and l̄ values.

Fig. 7: Comparison between the estimated values and theo-
retical values. ADD and FAR (%) vs. σ2

e plot. λf = 1000.
λe = 0.3 and µs = 0.05

Figure 8a plots the ADD and FAR (%) vs. σ2
e for the

proposed method and Method-A for a fixed set of values
for λf , λe and µs. ADD and FAR are estimated using MC
simulations. The ADD is high for the proposed method
compared to Method-A. However, the difference is small,
i.e., 36% (approx.) for the example model used in this paper.
On the other hand, there is not much difference between the
two methods for the FAR.

Figure 8b shows the ∆LQG vs σ2
e plots for the proposed

(a) (b)

Fig. 8: Comparison between proposed method and Method-
A. (a) ADD and FAR (%) vs. σ2

e plot. λf = 200. λe = 0.3
and µs = 0.05, (b) ∆LQG vs. σ2

e plot for two different λe.
λf = 100 and µs = 0.05.

method and Method-A, for two different values of λe, when
λf and µs are kept fixed. ∆LQG values are estimated by MC
simulations. We can observe a large improvement in ∆LQG
(80% approx.) for the proposed method when compared to
Method-A. Also, a large λe gives a better improvement in
∆LQG, but at the same time, it also increases ADD.

VI. CONCLUSION

We have proposed and demonstrated a sequential method
for detecting replay attacks by parsimoniously adding water-
marking to the control input. The proposed scheme reduces
the overall control cost during the normal operation of the
system at the expense of a small increase in ADD. We have
also derived a few theoretical results, such as the asymptotic
approximate expressions of ADD and FAR for the proposed
replay attack detection scheme. The numerical simulations
illustrate the efficacy of the proposed method and validate the
derived theoretical results. In our future work, the proposed
method will be extended for more generalized MIMO system
models. One can also find an analytical expression for the
∆LQG for the proposed method.

APPENDIX I
PROOF OF LEMMA 2

The correlation between γk and ek−1, i.e., −BCσ2
e , and

σ2
γ are derived following the same same steps as given in

[4]. Using (34) for the case k ≥ Γ, σ2
γ̃ is derived as

σ2
γ̃ = σ2

z − 2C(A+BL)Ex̂z(−1) + C2(A+BL)2σ2
x̂

+ C2B2µ̃sσ
2
e , (59)

where σ2
z = E0[y2k−k0 ] = σ2

y , Ex̂z(−1) = E1

[
x̂k−1|k−1zk

]
,

σ2
x̂ = E1

[
x̂2k|k

]
, and µ̃s = E1 [sk]. ek−1 is uncorrelated

to x̂k−1|k−1 and zk. Due to underlying stationarity and
ergodicity, we assume that all the random variables converge
to some steady-state distributions asymptotically, and only
use these steady state distributions in the subsequent analysis.
Combining (4)-(6) for k ≥ Γ, and replacing yk by zk, we
get

x̂k|k = Kzk +Ax̂k−1|k−1 +B(1− CK)ek−1sk−2, (60)

where A = (1− CK) (A+BL). Multiplying (60) with
itself, taking expectations on both sides, and finally rear-



ranging the terms we get,

σ2
x̂ =

K2

1−A2
σ2
y +

2AK
1−A2

Ex̂z(−1) +
B2(1− CK)2µ̃s

1−A2
σ2
e .

(61)

Using (61) in (59), and rearranging the terms we get (40). To
derive σ2

y (41), the following expression of yk for the case
before the attack is used.

yk = γk + C(A+BL)x̂k−1|k−1 + CBek−1sk−2. (62)

From (62), σ2
y is derived as

σ2
y = C2P +R+ C2(A+BL)2σ2

x̂ + C2B2µsσ
2
e , (63)

where µs = E0 [sk]. σ2
x̂ is derived using the similar steps as

before for the case k < Γ as

σ2
x̂ =

K2(C2P +R) +B2µsσ
2
e

1− (A+BL)2
. (64)

Using (64) in (62), we get (41).

APPENDIX II
PROOF OF LEMMA 3

To derive the expression of Ex̂z(−1), we first assume that
the fake observation zk is generated form the following par-
tially observed Gaussian Markov process (GMP) as follows,

xa,k = Aaxa,k−1 + wa,k−1, (65)
zk = Caxa,k. (66)

Now, for the replay attack, where zk = yk−k0 , the elements
of the above GMP will take the following forms,

xa,k =
[
xk−k0 x̂k−k0|k−k0−1 vk−k0

]T
, (67)

wa,k =
[
Bek−k0 + wk−k0 Bek−k0 vk−k0+1

]T
, (68)

Aa = (69) A+BLKC BL (1−KC) BLK
(A+BL)KC (A+BL) (1−KC) (A+BL)K

0 0 0

 ,
Ca =

[
C 0 1

]
, (70)

Qa =

B2µsσ
2
e +Q B2µsσ

2
e 0

B2µsσ
2
e B2µsσ

2
e 0

0 0 R

 . (71)

Using the given expressions (67) - (71), we can derive (42)
and (43) using the same steps given in [24].

APPENDIX III
PROOF OF LEMMA 4

Using the recursion of Zk (51) and starting from the initial
value Z0, (52)-(54) can be derived directly. After the attack
start point, exp (−Zk)→ 0 as k →∞, and Zk < ThS will
be true for a very short interval of time. Therefore, ln will
converge to a finite value as n → ∞, which is a property
of a slowly changing variable as defined in [23]. However,
a formal proof is not provided due to space constraints and
will be provided in the future extended version of the work.
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