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Abstract— In this paper, we perform structural analyses of a
parsimonious watermarking policy, which minimizes the aver-
age detection delay (ADD) to detect data deception attacks on
networked control systems (NCS) for a fixed upper bound on the
false alarm rate (FAR). The addition of physical watermarking
to the control input of a NCS increases the probability of
attack detections with an increase in the control cost. Therefore,
we formulate the problem of data deception attack detection
for NCS with the facility to add physical watermarking as
a stochastic optimal control problem. Then we solve the
problem by applying dynamic programming value iterations
and find a parsimonious watermarking policy that decides to
add watermarking and detects attacks based on the estimated
posterior probability of attack. We analyze the optimal policy
structure and find that it can be a one, two or three threshold
policy depending on a few parameter values. Simulation studies
show that the optimal policy for a practical range of parameter
values is a two-threshold policy on the posterior probability
of attack. Derivation of a threshold-based policy from the
structural analysis of the value iteration method reduces the
computational complexity during the runtime implementation
and offers better structural insights. Furthermore, such an
analysis provides a guideline for selecting the parameter values
to meet the design requirements.

I. INTRODUCTION

Cyber-Physical Systems (CPS) are considered the next
generation of intelligent systems that integrate the cyber
and physical layers. The cyber layer consists of software
programs. On the other hand, the physical layer consists
of the plant or the process being controlled or monitored
along with other physical components such as sensors,
networks, actuators, and embedded computers. The cyber
and physical layers communicate over a network, which
is a wireless network in most cases, and provide reliable,
accurate, robust, efficient and autonomous operations without
human involvement [1]. Due to their enumerated advantages,
CPS are getting deployed for various applications, such as
advanced healthcare, intelligent transportation systems, and
smart grids, to name a few. However, due to the use of
commodity software, off-the-shelf networking components,
and unattended operations, CPS are vulnerable to adversarial
attacks [2]. Therefore, we need to ensure the safety and
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security of CPS before the large-scale adaptation of such
systems for safety-critical applications. The objective of an
adversary may be to gain access to user-sensitive data, or the
attacker may want to cause some damage to the system by
tempering its availability, integrity or reliability. Therefore,
an attack on the CPS may cause monetary loss and pose a
serious threat to human safety and must be detected as early
as possible to reduce the extent of the damage.

The deception attack is one type of adversarial attack on
the physical layer of CPS. Under the deception attack, the
attacker feeds the CPS with harmful or unwanted information
to cause some damage [4], [2] and simultaneously tries to
remain stealthy. As reported in the literature, cryptography-
based cyber security measures may not be adequate to protect
CPS against attacks on the physical layer [2]. For example,
in the Stuxnet attack [3], the attackers exploited a known
vulnerability of a commercially used operating system and
caused damage to a uranium enrichment plant in Iran. In the
attack, the attackers issued harmful exogenous inputs to the
centrifugal pumps to increase their speed beyond the safety
limit. Furthermore, previously recorded observations from
the sensors were relayed during the attack to remain stealthy,
and such attacks are called replay attacks. The replay attack
is one type of data deception attack. In this paper, we have
studied the data deception attacks on the physical layer of
a networked control system (NCS), a widely used form of
CPS, where the attacker replaces the true measurements with
fake data.

A. Prior work

A well-studied defence mechanism against data deception
attacks is the addition of physical watermarking to the control
inputs or the observations of NCS. In general, the existing
methods perform various statistical tests on the received
observations or the innovation signal from the Kalman es-
timator to detect the presence of an attack. The concept of
physical watermarking is analogous to digital watermarking,
which is used to authenticate the rightful owner of the digital
content. In [2], a watermarking signal generated from a
hidden Markov model (HMM) is added to the optimal control
input from a linear quadratic Gaussian (LQG) controller
and performed χ2 test on the innovation signal for attack
detections. In another approach, the received observations
are used to generate two residue signals, which will have
finite values during an attack and otherwise will remain zero
[4]. In general, the attack detection mechanisms reported in
the literature perform batch processing and, therefore, do
not explicitly address the problem of the quickest detection



of attacks. In our prior work, we have studied the problem
of the quickest detection of data deception attacks on NCS
by applying the cumulative sum (CUSUM) technique using
the joint distributions of the watermarking signal and the
innovation signal [5], [6]. Furthermore, The reported method
is optimal in the sense that it minimises the supremum of
the average detection delay (SADD) for a fixed lower limit
on the average run length between two false alarm events
(ARL).

One inherent problem of the physical watermarking-based
defence mechanism is that it increases the control cost [2],
[5]. Since the attack on the CPS is a rare event, adding wa-
termarking signal for a very long time before the attack start
point increases the control cost considerably. Researchers are
studying different techniques to reduce the control cost due
to physical watermarking. In one approach, the watermarking
signal is added periodically to the control input in such a way
to maintain a balance between the detection delay and the
control cost [7]. In a different approach, the watermarking
signal is added directly to the observation before sending it
over the wireless network [8], [9]. Then at the receiving end,
the authenticity of the received data is checked by various
statistical tests. Finally, the added watermarking signal is
filtered out from the received observation before using it
in the controller. Since the watermarking signal is filtered
out, these methods do not cause any increase in the control
cost. However, these methods may fail in the scenario where
the attacker hijacks the sensor node and feeds the fake data
before the addition of the watermarking.

B. Contributions

In our prior work, we have addressed the problem of
increased control cost by deriving a parsimonious watermark-
ing policy that minimises the average detection delay (ADD)
for fixed upper limits on the false alarm rates (FAR), and an
average number of watermarking (ANW) events before the
attack start point [10], [11]. We formulated the problem as
a stochastic optimal control problem and solved it by using
dynamic programming value iterations. In this current paper,
we perform an in-depth study of the structure of the derived
parsimonious watermarking policy by the value iterations.
By analysing the structure of the Bellman equation and
the numerical simulation results, we found that the optimal
policy can be a one, two or three threshold policy on the
posterior probability of attack, pk. Our study shows that the
number of thresholds in the optimal policy depends on a
few parameter values. Furthermore, the optimal policy is a
two-threshold policy for the practical range of parameter
values. In a two-threshold policy, a watermarking signal
is added to the control input at the (k + 1)-th instant in
time if there is evidence of an attack being present in the
system, i.e., pk is greater than or equal to the first threshold
Ths. On the other hand, we decide that an attack is present
in the system and terminate the process when we gain
much higher confidence, i.e., pk ≥ Thd, where Thd is the
second threshold, and Thd > Ths. Implementing an optimal
policy derived from the value iteration is computationally

complex since the Bellman equation needs to be solved
at every time instant. However, finding a structure in the
optimal policy, such as a threshold-based policy, reduces
the computational requirements. In the current paper, we
have used the sequential quickest change detection theories
studied in [12], [13], [14].

C. Organization

This paper is organized as follows. The NCS model
considered in this paper and the data deception attack model
are discussed in Section II and Section III, respectively.
Section IV formulates the problem as a stochastic optimal
control problem. The solution approach and the structure
of the optimal policy are studied in Section V. Section VI
presents and discusses numerical simulation results to illus-
trate the proposed parsimonious watermarking scheme and
its strength and weakness. Finally, Section VII concludes the
paper.

II. SYSTEM MODELS DURING NORMAL OPERATIONS

We have considered a NCS, as shown in Fig. 1, which
is one of the most widely used forms of CPS. Figure 1
illustrates the block diagram of a standard NCS during
normal operations. Such models have also been used in many
works of literature [2]. As illustrated in Fig. 1, the NCS
considered for this study consists of a linear time-invariant
(LTI) plant, sensors, actuators, LQG controller and Kalman
state estimator. The sensors observe the required parameters
of the plant, and the observations are sent to the state
estimator via a wireless network. The LQG controller uses
the estimated states from the Kalman estimator to evaluate
the optimal control input, which is then sent to the actuators
via a wireless link. Finally, the actuators take necessary
actions according to the received control inputs and change
the plant parameters.

Fig. 1: Schematic diagram of the NCS during normal oper-
ation.

The plant is assumed to be a LTI system with the following
state-space model,

xk+1 = Axk + Buk + wk. (1)

Here xk ∈ IRn and uk ∈ IRp are the state and input
vectors, respectively, at the k-th instant in time. wk ∈ IRn ∼
N (0,Q) denotes the independent and identically distributed
(iid) process noise. The process noise variance Q > 0, which
denotes Q is a positive definite matrix. The observations
from the sensors are related to the states as

yk = Cxk + vk, (2)



where yk ∈ IRm is the observation vector at the k-th instant
in time. The measurement noise vk ∈ IRm ∼ N (0,R) is
also assumed to be iid and R > 0. In addition to that, process
and measurement noises are assumed to be uncorrelated to
each other and also to the initial state vector.

The Kalman filter (KF) estimates the state vector in two
steps at every time instant. First, it performs the time update
using the system model information and the control input
(see (3)), and then performs a measurement update using
the received measurements (see (4)).

x̂k|k−1 = Ax̂k−1|k−1 + Buk−1, (3)
x̂k|k = x̂k|k−1 + Kγk, (4)

where K is the steady-state Kalman gain and γk is the inno-
vation signal at the k-th time instant. x̂k|k−1 = E[xk|Ψk−1]
and x̂k|k = E[xk|Ψk] are the Kalman predicted and filtered
states, respectively. E[·] denotes the expectation operator. Ad-
ditionally, Ψk denotes the set of all input and measurement
information up to the k-th time instant. γk during the normal
system operation is evaluated as

γk = yk −Cx̂k|k−1. (5)

We assume that the system has been operational for a very
long time, and from k ≥ 0, the system is at a steady state.
Therefore, we can derive the steady-state Kalman gain K as
follows,

K = PC
′
(
CPC

′
+ R

)−1
. (6)

Here (·)′
denotes transpose of a matrix. P is the

steady-state state error covariance matrix, i.e., P =

E
[
(xk − x̂k|k−1)(xk − x̂k|k−1)

′
]
, which is the solution to

the following algebraic Riccati equation,

P = APA
′
+ Q−APC

′
(
CPC

′
+ R

)−1
CPA

′
. (7)

The optimal control input from the LQG controller is derived
by minimizing the following infinite horizon expected control
cost,

J = lim
N→∞

E

[
1

2N + 1

{
N∑

k=−N

(
x

′

kWxk + u
′

kUuk

)}]
,

(8)
where W ≥ 0 and U ≥ 0 are the two user selected weight
matrices. In this context, ≥ 0 denotes both the matrices
are positive semi-definite. Minimization of (8) provides the
optimal control input u∗k at the k-th instant as a linear
function of the estimated states from the KF as follows,

u∗k = Lx̂k|k, where (9)

L = −
(
B

′
SB + U

)−1
B

′
SA. (10)

Here S is the solution to the following algebraic Riccati
equation,

S = A
′
SA + W −A

′
SB

(
B

′
SB + U

)−1
B

′
SA. (11)

III. ATTACK MODEL

The NCS discussed in Section II is vulnerable to adversar-
ial attacks on the sensors, actuators, and networks, and such
attacks may not be detected or prevented by the existing
cybersecurity measures. In the attack model considered for
this paper, the attacker replaces all the sensor measurements
with fake data generated by its own system, as shown in
Fig. 2. We assume the attacker knows about the system and
controller parameters but does not know the instantaneous
values of the noise vectors or the watermarking signal.
Furthermore, the attacker can gain access to the sensor nodes
and replace true observations with fake data.

Fig. 2: Schematic diagram of the system during under data
deception attack.

We assume the attacker will design the fake data zk in
such a way that the statistical properties of zk will be similar
to that of the true observation yk. Since yk is a stationary
random process at the steady state, which is statistically
dependent on its past values, we assume the attacker will
generate zk from the following linear stationary stochastic
process,

zk = Aazk−1 + wa,k−1. (12)

Here wa,k ∼ N (0,Qa) is the iid noise vector at the k-th
time instant, and Qa ∈ IRm×m > 0.

To demonstrate the effectiveness of the attack model
considered in this paper, we simulate the system shown in
Fig. 2 using the model parameters given in Appendix I. From
the plots of true and estimated states in Fig. 3, we observe
that the true states become unstable and unbounded shortly
after the attack start point. On the other hand, the estimated
states based on the received fake observations do not change
much, making the detection of such attacks challenging.
A more detailed discussion about the attack model (12) is
available in [6].

IV. PROBLEM FORMULATION

This section discusses the formulation of the quickest
attack detection problem using physical watermarking parsi-
moniously. We perform the following hypothesis test at each
time instant.

H0: No attack present.
H1: Attack present in the system.

To formulate the quickest attack detection problem as a
stochastic optimal control problem, we define the following



Fig. 3: Schematic diagram of the system during a data
deception attack.

two decision variables, sk and dk.

sk =

{
0, no watermarking at (k + 1)-th time instant
1, add watermarking at (k + 1)-th time instant.

(13)

dk =

{
0, Select Hypothesis H0. Process continues.
1, Select Hypothesis H1. Process terminates.

(14)
Furthermore, we assume that the attack start point, τ , is a
random variable (RV), which has geometric distribution with
parameter ρ. This assumption is also followed in many works
of literature on the sequential change detection problem [13],
[15]. In addition to that, as discussed in [15], a particular
property of the geometric distribution enables us to derive an
analytical expression of ADD by applying non-linear renewal
theory.

A. Parsimonious Watermarking Scheme

We consider the watermarking signal to be an iid noise
with Gaussian distribution, i.e., ek ∼ N (0,Σe). As studied
in [2], [6], if the iid watermarking signal is added to the LQG
control input at all the time instances, then the increase in the
control cost, ∆LQGa, during the normal system operation
will be as follows,

∆LQGa = tr (HΣe) , (15)

where H = B
′
ΣLB + U, (16)

and ΣL is the solution to the following Lyapunov equation

(A + BL)
′
ΣL (A + BL)−ΣL + L

′
UL + W = 0. (17)

However, watermarking is not added to the control input

Fig. 4: Parsimonious watermarking scheme.

in all instances in the proposed method. The decision of
adding watermarking is controlled by the decision variable
sk (13) as illustrated in Fig. 4. On the other hand, the value

of sk is decided based on some evidence, i.e., the posterior
probability of attack pk. In the proposed scheme, we aim
to limit the average number of watermarking (ANW) events
before the attack start point below a user-defined threshold
ANWth. Such parsimonious use of watermarking reduces
the control cost. The relationship between ANW and the
increase in the control cost ∆LQG for the proposed method
is given in (18). The derivation of (18) is provided in [11].

∆LQG = ρANW∆LQGa. (18)

B. Formulation of Bellman Equation
Our objective is to find an optimal policy to satisfy the

following constrained optimization problem.

min
ud∈U

ADD

s.t. FAR ≤ FARth
ANW ≤ ANWth,

(19)

where FARth and ANWth are the two user-defined thresh-
olds. Here ud denotes the policy, and U is the set of all
permissible stationary deterministic policies (see Table I).
The instantaneous value of the policy is denoted by ud,k
and the relationship between the policy value ud,k and
the corresponding decision variables sk and dk is given in
Table I.

TABLE I: U
ud,k dk sk

1 0 0
2 0 1
3 1 0

Note that, if dk = 1, then the process will immediately
terminate, and there will be no use of adding watermarking
at the (k + 1)-th time instant. Therefore, the combination
(sk = 1, dk = 1) has been ignored. We can write ADD, FAR
and ANW in terms of the posterior probability of attack pk,
and the decision variables sk and dk as follows,

ADD =

τ∑
k=1

pk1{dk=0}, (20)

FAR =

τ∑
k=1

(1− pk)1{dk=1}, and (21)

ANW =

τ∑
k=1

(1− pk)1{sk=1}1{dk=0}. (22)

First, we convert the constrained optimization problem in
(19) into an unconstrained cost function J using the La-
grangian multipliers λf and λe as follows,

J∗ = min
ud∈U

ADD + λfFAR+ λeANW. (23)

Then using (20)-(22), we transform (23) into the following
Bellman equation,

J (pk) = min
ud,k

[
pk1{dk=0} + λf (1− pk)1{dk=1}

+λe (1− pk)1{sk=1}1{dk=0} +B0 (pk)1{sk=0}1{dk=0}

+B1 (pk)1{sk=1}1{dk=0}
]
, (24)



where B0 (pk) = E [J (φ0 (pk))], and B1 (pk) =
E [J (φ1 (pk))] are the expected total costs from (k + 1)-th
time instant till the termination of the process when sk = 0
and sk = 1, respectively, and dk = 0. The functions φ0(·)
and φ1(·) denote the one step time update functions of pk,
i.e., pk = φ0(pk−1), when sk−2 = 0, and pk = φ1(pk−1),
otherwise. Note that when dk = 1, the process terminates
immediately, so there will be no additional cost after the
k-th time instant. The expressions of φ0(·) and φ1(·), and
a detailed discussion on the formulation of the Bellman
equation from the constrained optimization problem can be
found in [11]. However, the same has been removed from the
current paper to focus mainly on the structural analysis of
the optimal policy and also due to the space constraints. The
Bellman equation is solved by value iterations, as discussed
in the following section.

V. STRUCTURAL ANALYSIS OF THE OPTIMAL POLICY

In this section, we discuss the solution of the Bellman
equation (24) by value iterations [16], and the structure of
the optimal policy found from that.

A. Solution of Bellman Equation

We get the following conditions from value iterations to
derive the values of the decision variables sk and dk, see
(25) and (26). Then the subsequent discussion explains how
(25) and (26) can be transformed into stationary deterministic
threshold-based policy.

sk =

{
0, B0 (pk)−B1 (pk) < λe (1− pk) ,

1, otherwise.
(25)

dk =


0, pk + λe (1− pk)1{sk=1} +B0 (pk)1{sk=0}

+B1 (pk)1{sk=1} < λf (1− pk) ,

1, otherwise.
(26)

The accessibility hypothesis discussed in [17] tells us
that under this hypothesis, for every stationary deterministic
policy ud ∈ U , any arbitrary state, say pk, is accessible from
each starting state p0. According to the theory discussed in
[17], under the accessibility hypothesis, the dynamic pro-
gramming equation (24) is solvable by at least one stationary
deterministic policy for each λf ≥ 0 and λe ≥ 0. Therefore,
to satisfy the accessibility hypothesis we discretize the range
space of pk, i.e., 0 ≤ pk ≤ 1. Furthermore, to apply the value
iterations, we also discretize the search space of λf and λe.
For each point on the search grid of λf and λe, we perform
value iterations [16] to find the solution of the Bellman
equation (24). However, we only keep the best policy that
satisfies the given constraints (19).

B. Existence of a stationary deterministic optimal policy

We take the following assumption to ensure that the
optimal policy obtained by solving the Bellman equation
(24) using value iterations will also satisfy the original
constrained optimization problem (19).

Assumption A1: There exist at least one stationary
deterministic policy ud, for which both the constraints as
given in (19) will be satisfied.

Now, we need to prove that the optimal policy obtained by
value iteration from (24) will be a stationary deterministic
policy. By following the similar steps used to prove Lemma
3.1 in [17], we can show that the cost FAR and ANW will
be monotone and non-increasing in λf and λe, respectively.
As stated in Lemma 3.3 from [17], the inequality conditions
in the original constrained optimization problem (19) will
be satisfied for finite values of λf ≥ 0 and λe ≥ 0 for
some deterministic policy due to the monotone and non-
increasing properties of FAR and ANW. Finally, under the
assumption A1 or the weaker condition of Lemma 3.1, the
stationary deterministic optimal policy found by solving the
Bellman equation (24) from the unconstrained optimization
problem with the Lagrangian multipliers, λe and λf , will be
the solution of the original constrained problem as given in
(19) [17].

C. Structural Analysis of Optimal Policy

We perform extensive numerical simulations to analyse the
optimal policy structure and the effect of the parameters λf ,
λe and ρ on the policy structure. We have used an open-
loop unstable multi-input single-output (MISO) system for
the simulation study, and Appendix I provides the parameter
values used for the simulation. The simulation results are
explained using (25)-(26). For the ease of discussion, we
will refer to the left and right-hand sides (LHS and RHS)
of the inequality in (25) as LHSs and RHSs, respectively.
Similarly, the left and right-hand sides of the inequality in
(26) are denoted as LHSd and RHSd, respectively.

From (25)-(26), we can say that when pk = 0 or close
to 0, LHSs < RHSs and LHSd < RHSd. Therefore, for
pk ≈ 0, both the decision variables sk = 0 and dk = 0,
i.e., ud,k = 1. As pk increases, λe(1 − pk) and λf (1 − pk)
both will decrease, and eventually LHSs > RHSs and
LHSd > RHSd. Now, at what values of pk such changes
will happen depends on λf , λe and ρ. Moreover, since
J(1) = B1(1) = B0(1) = 0 as the process terminates when
pk = 1, RHSs = LHSs for atleast two different values of
pk; one obviously at pk = 1. For a relatively high value of
λe compared to λf , the cost for adding watermarking will be
relatively high compared to the false alarm event. Therefore,
under such situation, it may happen that LHSd ≥ RHSd
before LHSs ≥ RHSs. Since the process terminates when
LHSd ≥ RHSd or dk = 1, we will get a one-threshold
optimal policy. In other words, in the one-threshold policy,
sk = 0 and dk = 0, i.e., ud,k = 1 changes to sk = 0 and
dk = 1, i.e., ud,k = 3, when pk ≥ Thd. Figures 5 and 6
provide the insights of the one-threshold policy by plotting
the LHS and RHS of (25) and (25), for a relatively large
λe and small λf . The corresponding one-threshold optimal
policy ud,k is plotted in Fig. 7.



Fig. 5: LHSs and RHSs vs. pk. λe = 0.6, λf = 50, ρ =
0.001.

Fig. 6: LHSd and RHSd vs. pk. λe = 0.6, λf = 50, ρ =
0.001.

Fig. 7: u∗d,k vs. pk. λe = 0.6, λf = 50, ρ = 0.001.

From simulation studies, we observe that for a higher value
of ρ, it may happen that RHSs = LSHs for two different
values of pk, say Ths and Ths2 , where Ths2 > Ths;
we ignore the the case for pk = 1 for this discussion.
Additionally, RHSd ≥ LHSd for pk ≥ Thd, and Thd >
Ths2 > Ths. Such a condition will result in a three-threshold
optimal policy. Therefore, for the three-threshold policy, ud,k
will start from 1 at pk = 0, then become ud,k = 2 when
pk ≥ Ths. Next, ud,k = 1 again when pk ≥ Ths2 . Finally,
when pk ≥ Thd, ud,k = 3. Figures 8 and 9 provide the
insights of the three-threshold policy by plotting the LHS
and RHS of (25) and (25), for a relatively large ρ. The
plots are expanded for the higher values of pk to illustrate
the crossing points better. The corresponding three-threshold
optimal policy u∗d,k is plotted in Fig. 10.

Since adversarial attacks are rare events, ρ is generally

Fig. 8: LHSs and RHSs vs. pk. λe = 0.6, λf = 100,
ρ = 0.5.

Fig. 9: LHSd and RHSd vs. pk. λe = 0.6, λf = 100,
ρ = 0.5.

Fig. 10: u∗d,k vs. pk. λe = 0.6, λf = 100, ρ = 0.5.

expected to be low, i.e., close to zero, under practical
situations. Moreover, the cost of a false alarm event should be
much higher than adding watermarking at a given time point
for most systems. Therefore, for most practical cases, we can
assume λf � λe and ρ is small. Simulation studies show that
the optimal policy will be a two-threshold policy under such
practical parameter values. In other words, LRSs > RHSs
at pk ≥ Ths for the first time, and LRSs = RHSs at
pk = Ths2 = 1 for the second time, also, Ths2 > Ths.
Moreover, LHSd ≥ RHSd at pk ≥ Thd and Ths <
Thd ≤ Ths2 . Figures 11 and 12 provide the insights of the
two-threshold policy by plotting the LHS and RHS of (25)
and (25), for a relatively small λe, large λf and ρ close to
zero. The corresponding two-threshold optimal policy u∗d,k is
summarized in (27) and plotted in Fig. 13. The findings from
the structural analysis of the optimal policy of this paper are



similar to [13].

u∗d,k =


1, i.e., (sk = 0, dk = 0) pk < Ths,

2, i.e., (sk = 1, dk = 0) pk ≥ Ths,
3, i.e., (sk = 0, dk = 1) pk ≥ Thd.

(27)

Fig. 11: LHSs and RHSs vs. pk. λe = 0.2, λf = 100,
ρ = 0.001.

Fig. 12: LHSd and RHSd vs. pk. λe = 0.2, λf = 100,
ρ = 0.001.

Fig. 13: u∗d,k vs. pk. λe = 0.2, λf = 100, ρ = 0.001.

VI. NUMERICAL RESULTS

In this section, we illustrate the proposed parsimonious
watermarking policy by numerical simulations using the
MISO system parameters provided in Appendix I. Figure 14
plots the decision variables sk and dk, and the posterior
probability of attack pk for a sample trial run under the two-
threshold policy shown in Fig. 13. The attack start point is
marked in the figure as ‘change point’. For the simulation,

we have taken watermarking signal variance to be a diagonal
matrix with equal signal power, i.e., σ2

e . We observe that only
for a few time instances sk = 1, i.e., watermarking has been
added to the control input, before the attack start point. Such
parsimonious use of watermarking improves the control cost.
On the other hand, after the attack starts, pk increases rapidly
and crosses the threshold Ths first and then, after a while, the
second threshold Thd. In other words, after the attack starts,
watermarking is added to the control inputs most of the time,
reducing the ADD compared to the no-watermarking case.

Fig. 14: sk, dk and pk vs. k for a sample trial run. λe = 0.2,
λf = 100, ρ = 0.001, and σ2

e = 1.19.

Figure 15 compares the ∆LQG for the proposed method
and the ∆LQGa for the always present watermarking case
for the same values of Σe. Σe is assumed to be diagonal,
i.e., Σe = diag

(
σ2
e σ

2
e

)
values. For the proposed method,

the thresholds Ths and Thd are derived by value iterations
for each σ2

e . We observe a large improvement in the control
cost (approx. 99% reduction in ∆LQG) for the proposed
method.

Fig. 15: Comparison between proposed method and the
always present watermarking case. ∆LQG vs. σ2

e plot. λf =
100, λe = 0.2, and ρ = 0.001.

Figure 16 compares the ADD for the proposed method and
the ADD for the always present watermarking case at the
same watermarking signal power levels. As before, we take
Σe = diag

(
σ2
e σ

2
e

)
for the simulation. Also, the thresholds

Ths and Thd are derived by value iterations for each σ2
e

values. We observe an average increase of 35% (approx.)
in ADD for the proposed method compared to the always



present watermarking case. In other words, ADD increases
for the proposed method, but the increase is moderate.

Fig. 16: Comparison between proposed method and the
always present watermarking case. ADD vs. σ2

e plot. λf =
100, λe = 0.2, and ρ = 0.001.

VII. CONCLUSION

This paper derives a parsimonious watermarking policy to
minimize the ADD for fixed upper limits on FAR and ANW.
In addition, the limit on ANW reduces the control cost during
normal system operations. The optimal policy is derived
by formulating the Bellman equation from a constrained
optimization problem and solving it by value iterations. The
optimal policy found by the value iterations has been studied
by numerical simulations and by analyzing the structure of
the Bellman equation. We observe that the optimal policy
may be a one, two, or three threshold policy, but under a
practical range of parameter values, the optimal policy is a
two-threshold policy. Furthermore, deriving a threshold base
policy from the value iteration solutions reduces the run-
time computations when implementing the quickest attack
detection mechanism.

APPENDIX I
SYSTEM PARAMETERS

The following system parameters are used for simulation
study.

A =

[
0.75 0.2
0.2 1.0

]
B =

[
0.9 0.5
0.1 1.2

]
C =

[
1.0 −1.0

]
Q = diag

[
1 1

]
R = 1 W = diag

[
1 2

]
U = diag

[
0.4 0.7

]
Aa = 0.5 Qa = 7.5
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