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Abstract— The addition of physical watermarking to the
control input is a well-adopted technique to detect the data
deception attacks on the cyber-physical systems. However, the
addition of the watermarking increases the control cost. On
the other hand, the attack might be a rare event. In this
paper, we propose to reduce the control cost when the system
is not under attack by adding the watermarking as and when
needed depending on a posterior probability of attack. We first
formulate a stochastic optimal control problem, and then solve
it using dynamic programming by keeping a balance between
the detection delay, false alarm rate (FAR), and the reduction
in control cost. We numerically find two thresholds from the
value iterations, The and Thd, Thd is greater than The, for the
posterior probability of attack pk. If pk is greater than or equal
to The, then the watermarking signal is added for the (k+1)-th
instant of time. On the other hand, if pk greater than or equal
to Thd, then we declare that the system is under attack. We
have provided simulation results to illustrate our approach. For
the example system model considered in this paper, we have
achieved a considerable reduction in the control cost during the
normal operation compared to the case where watermarking is
always present without sacrificing much in the detection delay.

I. INTRODUCTION

Large cyber-physical systems (CPS) employing networked
controls are getting deployed for various safety-critical appli-
cations, such as intelligent transportation, smart grids, manu-
facturing industries, etc. [1]. However, the use of commodity
software and off-the-shelf components for networking and
computation make the CPS vulnerable to the attacks [2].
Before we go for large scale implementations of the CPS
for various safety-critical applications, such vulnerabilities
must be addressed. Several effective protection schemes,
such as cryptography, firewall, digital watermarking, etc. are
in place to protect the cyber layer of the CPS. However,
such protection schemes may not be adequate to protect the
physical layer of the CPS against the data deception attacks
and denial of service (DoS) attacks. There are multiple
incidents in the past where the attacker successfully caused
damage to the CPS despite the presence of various protection
schemes for the cyber layer [2]. Stuxnet attack is probably
the most famous one [3]. In the data deception attack, the
attacker replaces the true observations and/or the actual
control inputs with fake data and/or harmful exogenous
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inputs. In one form of data deception attacks, the attacker
records the true observations and replays it back at some later
point in time. Such attacks are called replay attacks, and the
Stuxnet attack was an incident of a replay attack. In the DoS,
the attacker overpowers the wireless communication channel
so that the required information could not be transmitted.
Attacks on the physical layer can cause monetary loss as well
as it can pose serious threats to human safety. Therefore, it
is of immense importance to detect the attack on the CPS as
soon as possible to reduce the amount of damage.

In this paper, we have studied the problem of data de-
ception attacks where the attacker replaces the true obser-
vations either with the fake data generated from a separate
stochastic process or with the previous recordings of the true
observations. A well-adopted technique to detect such data
deception attacks on the networked control systems (NCS)
is to add the watermarking signals to the control inputs. The
watermarking signals may be generated randomly from some
Gaussian distributions [4] or hidden Markov models (HMM)
[2]. Attacks are generally detected by different statistical
tests on the innovation signal [2] or the observations [5].
Such methods are studied intensively in the literature [2], [5].
However, the addition of the watermarking increases control
cost. In [2], the authors provide an analytical expression
for the increase in the linear quadratic Gaussian (LQG)
control cost if the watermarking is added to the control inputs
for every time instants during the normal operation of the
system.

Since the attack on the system can be considered to be a
rare event, the addition of the watermarking to the system
operating under the normal conditions for a long time will
increase the total control cost significantly. There are few
approaches found in the literature that address the problem
of increased control cost due to the added watermarking.
In one approach, the authors add periodic watermarking to
reduce the control cost and keep a balance between the
improvement in terms of the control cost and the increase in
the detection delay [6]. In another approach, the researchers
add or multiply the watermarking signals to the observations
before the transmission. At the receiver end, the watermark-
ing signals are filtered out before feeding the observations to
the controller. Therefore, the control cost does not increase.
In [7], each output is modulated by a watermarking signal
before the transmission. In [8], authors use pairs of filters to
add and remove sinusoidal watermarking signals, whereas, in
[9], random noise watermarking signals are used. However,
if the attacker can hijack the sensor node and replaces the
true observations before the addition of the watermarking,
then such methods may not be able to detect the attacks.

In this paper, we have devised an adaptive technique for



adding watermarking to reduce the control cost during the
normal operation of the system. The proposed watermark-
ing scheme is formulated as an optimal stochastic control
problem inspired by the method of reducing the sampled
data required to detect a change in a process [10]. In [10],
a Bayesian sequential detection technique is applied, which
is asymptotically optimal under certain conditions [11]. One
of the conditions is that the prior distribution of the change
point should obey either of the following two conditions, see
(1) and (2). In our study, we assume the attack start point Γ
to be a random variable (RV) having a geometric distribution
with parameter ρ, which is similar to several other literature
[10], [12]. A geometric prior distribution of the attack start
point meets the condition given in (1).

lim
k→∞

log P {Γ ≥ k + 1}
k

= −c, c > 0, (1)

lim
k→∞

log P {Γ ≥ k + 1}
k

= 0, (2)

At every time step k, we need to make two decisions, 1)
whether to add the watermarking for the k+1-th time instant,
2) whether to accept that the attack is present in the system.
We have used dynamic programming to find the optimal
policy that will minimize the average detection delay (ADD)
subject to some constraints on the false alarm rate (FAR) and
the average number of times the watermarking (ANW) is
added. By solving the optimization problem using dynamic
programming, we find two thresholds The and Tha for the
posterior probability of attack pk. If for the k-th instant, the
posterior probability pk ≥ The, then the watermarking signal
is added to the k + 1-th instant control input uk+1. On the
other hand, if pk ≥ Thd, then it is decided that the attack
is present in the system, i.e., k ≥ Γ. We have illustrated the
proposed technique by numerical results from the simulation
of a single-input-single-output (SISO) system under attack
and no-attack conditions.

This paper is organized as follows. Section II provides the
system model under normal and attack conditions. Section III
explains the problem formulation and the proposed solution
in detail. Section IV discusses the numerical results, and
Section V concludes the paper.

II. SYSTEM MODEL

The system model during normal operations and the model
with the data deception attack are discussed in this section.

A. System model during normal operation

A schematic diagram of the NCS, considered in this paper,
during the normal operation is shown in Fig. 1. The state

Fig. 1: Schematic diagram of the system during normal operation.

update and the measurement equations of the linear and time-

invariant SISO system are given as

xk = Axk−1 +Buk−1 + wk−1, and (3)
yk = Cxk + vk, (4)

where xk and uk are the state and input variables at the
k-th instant. yk is the observation at the k-th instant. The
process noise wk and the observation noise vk are assumed
to be independent and identically distributed (iid) zero-mean
Gaussian processes with variances Q and R respectively.
wk and vk are uncorrelated with each other, and both are
uncorrelated to the initial state x0. All the quantities in (3)
and (4) are real and scalar. We also assume that the system
was started a long time ago and currently is at a steady-state.
The Kalman filter is used to estimate the state as follows,

x̂k|k−1 = Ax̂k−1|k−1 +Buk−1 (5)
x̂k|k = x̂k|k−1 +Kγk, (6)

where x̂k|k−1 = E [xk|ξk−1] and x̂k|k = E [xk|ξk] are
the Kalman predicted and filtered states respectively. E[·]
denotes the expectation operator and ξk is the set of all input
and output data up to the k-th instant of time. γk is the
innovation signal given as

γk = yk − Cx̂k|k−1. (7)

The steady-state Kalman gain K is as follows,

K = CP
(
C2P +R

)−1
. (8)

Here, P = E
[(
xk − x̂k|k−1

)2]
, which can be obtained from

the solution to the following algebraic Riccati equation,

P = A2P +Q−A2C2P 2
(
C2P +R

)−1
. (9)

The optimal control signal u∗k is derived by minimizing the
following infinite horizon LQG cost,

Jlqg = lim
T→∞

E

[
1

2T + 1

T∑
k=−T

(
Wx2

k + Uu2
k

)]
, (10)

where W and U are the two positive weights. The LQG
control policy gives a fixed-gain linear control signal as

u∗k = Lx̂k|k, (11)

and L = −ABS
(
B2S + U)

)
. (12)

Here, S is the solution to the following algebraic Riccati
equation,

S = A2S +W −A2B2S2
(
B2S + U

)−1
. (13)

B. Attack Model

We assume that the attacker has access to the sensor nodes
and can replace the true observations with fake data. We also
assume that the attacker has complete knowledge about the
system parameters, i.e., A, B, C, Q, and R, and the control
policy, i.e., L. However, the attacker can not alter the control
signal. The attacker replaces the true observations yk by the
fake data zk from k ≥ Γ. The fake observation data zk is



assumed to be generated from a general stationary stochastic
process as

zk = αzk−1 + wa,k−1, (14)

where α is the attacker’s system parameter and wa,k is the
iid noise. wa,k ∼ N (0, Qa). Such an attack model can also
be used for sequential replay attack detections after a few
modifications as studied in [13]. The following statistics can
be derived from (14).

E
[
z2
k

]
= σ2

z =
Qa

1− α
, and (15)

E [zkzk−k0 ] = αk0σ2
z , [α < 1]. (16)

The attacker’s system parameters σ2
z and α can be estimated

online from the received observations, which will operate
in parallel with the attack detection algorithm. During the
attack, the Kalman predicted and filtered states are denoted
as x̂Fk|k−1 and x̂Fk|k, respectively, which are derived from (5)
and (6), but the innovation signal γ̃k during the attack takes
the following form,

γ̃k = zk − Cx̂Fk|k−1. (17)

We assume that the defender will know the estimated values
of σ2

z and α.
A schematic diagram of the system under the data decep-

tion attack is shown in Fig. 2.

Fig. 2: Schematic diagram of the system under attack.

The attack start point k = Γ is assumed to be a RV with
a geometric distribution of parameter ρ, where 0 < ρ < 1.
Therefore, the probability Πk = P {Γ = k} will be [10]

Πk = P {Γ = k} = Π01{k=0}

+ (1−Π0) ρ (1− ρ)
k−1

1{k≥1}. (18)

Here, Π0 = P {Γ ≤ 0}, i.e., Π0 is the probability of the
attack happening before the start of the observation time k =
0. 1{condition} is the indicator function, 1{condition} = 1 if
the condition is satisfied, otherwise, 1{condition} = 0. In
general, 0 ≤ Π0 < 1. However, for our problem formulation
we have taken Π0 = 0. The defender does not know the exact
value of the attack start point Γ, but he knows about the prior
distribution of Γ and the geometric distribution parameter ρ.

III. DEFENCE MECHANISM

In this section, we discuss the proposed defence mecha-
nism against the data deception attack by adaptively adding
watermarking to the control input.

A. Watermarking the Inputs

For attack detection, we perform hypothesis testing to
decide from the following two hypotheses.
H0: No attack present.

H1: Attack present in the system.
We add iid zero-mean Gaussian noise watermarking signal
ek with variance σ2

e to the optimal LQG control input u∗k to
authenticate the observations. The addition of watermarking
increases the attack detectability [2], at the same time, it also
increases the control cost. If watermarking is added to the
input signal for every k-th instant of time, then the increase
in the LQG control cost, ∆LQG, during the normal system
operation becomes [4]

∆LQG =

(
U +B2

(
W + L2U

) [
1− (A+BL)

2
]−1
)
σ2
e .

(19)
∆LQG is the time average of the increase in the control
cost. Since an attack is a rare event, the system is expected
to run normally for a long time. Therefore, the increase
in the total control cost becomes significant over time.
Hence, we propose an adaptive technique for the addition
of watermarking to reduce the average number of times
we add the watermarking, i.e., ANW , to the control input.
The reduction in the watermarking will reduce the control
cost compared to the case where watermarking is present all
the time. We decide to add the watermarking or to declare
an attack is present in the system based on the posterior
probability pk defined as follows,

pk , P {Γ ≤ k|Ik} . (20)

Ik is the set of all available information up to the k-th instant
of time. Therefore, we need two decision variables, sk and
dk as follows,

sk =

{
0, no watermarking for (k + 1)-th time instant
1, add watermarking for (k + 1)-th time instant.

(21)

dk =

{
0, Hypothesis H0 selected
1, Hypothesis H1 selected.

(22)

A schematic diagram of the system with the need-based
watermarking is shown in Fig. 3. The input signal under
the proposed defence mechanism takes the following form,

uk = u∗k + sk−1ek. (23)

Detection of attacks without the watermarking is a limiting
case for the proposed scheme, where σ2

e = 0. However, such
a choice will result in a large detection delay.

Fig. 3: Schematic diagram of the system with need-based water-
marking.



B. Selection of test data

The innovation signals before and after the attack, γk and
γ̃k, for the watermarked input, take the following forms [4],

γk = CA
(
xk−1 − x̂k−1|k−1

)
+ Cwk−1 + vk, (24)

γ̃k = zk − C (A+BL) x̂Fk−1|k−1 − CBek−1. (25)

Therefore, the innovation signal γk before the attack is
uncorrelated to the watermarking signal ek−1, and on the
contrary, the innovation signal γ̃k after the attack is correlated
with the watermarking signal ek−1. Such property motivates
the use of the innovation signal as the test data for attack
detections. If the watermarking is added to the input, then
we use the joint distributions of the innovation signal and
the watermarking signal, because it increases the Kullback-
Leibler divergence (KLD) between the two distributions
before and after the attack as discussed by [4]. Distributions
of the innovation signals, i.e., γk and γ̃k, and the joint
distributions of the innovation and the watermarking before
and after the attack are all zero-mean Gaussian distributions.
The required variances are given as follows, [4],

E
[
γ2
k

]
= σ2

γ = C2P +R, (26)

E
[
γ̃2
k

]
= σ2

γ̃ =

[(
1− αCK (A+BL)

1− αA

)2

+

(
1− α2

)
C2K2 (A+BL)

2

(1−A2) (1− αA)
2

]
σ2
z +

B2C2

1−A2
σ2
e , (27)

E
[
γe,kγ

T
e,k

]
=

[
σ2
γ 0

0 σ2
e

]
, (28)

E
[
γ̃e,kγ̃

T
e,k

]
=

[
σ2
γ̃ −BCσ2

e

−BCσ2
e σ2

e

]
, (29)

where A = (1− CK) (A+BL), γe,k =
[
γk ek−1

]T
, and

γ̃e,k =
[
γ̃k ek−1

]T
.

C. Problem Formulation

Our objective is to find the optimal policy for the decision
variables, sk and dk, so that it minimizes the ADD for the
fixed thresholds on FAR and ANW . We define ADD, FAR,
and ANW as in [10],

ADD = E1 [τ − Γ|τ ≥ Γ] , (30)
FAR = P0 {τ < Γ} , (31)
ANW = E0 [Ne] . (32)

Here, E0[·] and E1[·] represent the expectation with respect
to the before and after attack distributions P0 and P1,
respectively. τ is the time when the attack is detected by
the algorithm. Ne is the number of times the watermarking
is added before the attack start point. After the attack start
point, our primary objective is to detect the attack as soon
as possible to reduce the amount of damage to the CPS, and
we are not concerned about the increase in the control cost.

Now, the optimization problem can be formulated as

min
ud

ADD

s.t. FAR ≤ FARth
ANW ≤ ANWth,

(33)

where FARth and ANWth are the thresholds for FAR
and ANW respectively. ud represents the policy for the
decision variables sk and dk. The control space of the
stochastic optimization problem under study is finite, and we
have discretized the state-space into a finite set. From the
accessibility hypothesis as defined in [14], the constrained
optimization problem of (33) can be converted into an
unconstrained Lagrangian form as follows [10], [14],

J∗ = min
ud

ADD + λfFAR+ λeANW, (34)

where λf > 0 and λe > 0 are the Lagrangian multipliers.
Now, the system can be in one of the following three stages
at any k-th instant of time, see (35).

θk =


0 No attack,
1 System under attack,
Te Termination stage, attack detected.

(35)

ADD, FAR and ANW can be expressed in terms of the state
variable θk and control variables sk and dk as follows [15].

ADD = E
[
1{θk=1}1{dk=0}

]
, (36)

FAR = E
[
1{θk=0}1{dk=1}

]
, and (37)

ANW = E
[
1{θk=0}1{dk=0}1{sk=1}

]
. (38)

Using (36)-(38) in (34), we can represent the cost function
as the following summation.

J∗ = min
ud

E

[
τ∑
k=0

gk (θk, sk, dk)

]
. (39)

Here gk(·) is the per stage cost which is given as follows,

gk (θk, sk, dk) = 1{θk 6=Te}
[
1{θk=1}1{dk=0}

+λf1{θk=0}1{dk=1} + λe1{θk=0}1{sk=1}1{dk=0}
]
.

(40)

The probability pk from (20) can also be written as

pk = P (θk = 1|Ik) . (41)

Therefore, the expected value of the per stage cost function
gk(·) can be expressed using (41) as

E [gk (θk, sk, dk)] = gE,k (pk, ud,k) = p1{dk=0}+

λf (1− p)1{dk=1} + λe (1− p)1{sk=1}1{dk=0}. (42)

D. Finding the optimal policy

The optimization problem of (39) is solved by applying
the dynamic programming approach as in [16] using the
sufficient statistics pk. pk can be updated using the following
lemma.

Lemma 1: The posterior probability of the attack pk fol-
lows the following update rule,

pk+1 =

{
TmL(γ̄k+1)

TmL(γ̄k+1)+1−Tm
if sk = 0

TmL(γ̄k+1,ek)
TmL(γ̄k+1,ek)+1−Tm

if sk = 1
(43)



where Tm = pk + (1− pk) ρ. L (γ̄k+1) and L (γ̄k+1, ek) are
the likelihood ratios as given below,

L (γ̄k+1) =
f̃ (γ̄k+1)

f (γ̄k+1)
(44)

L (γ̄k+1, ek) =
f̃ (γ̄k+1, ek)

f (γ̄k+1, ek)
(45)

where γ̄k = γk if k < Γ, and γ̄k = γ̃k if k ≥ Γ. f (·)
and f̃ (·) denote the likelihoods before and after the attack
respectively.

Proof 1: Using the Baye’s rule the recursion of pk can be
proved directly [10].
The value iteration in [16] is used to solve the optimization
problem (39)) in the following steps.

Step-1: Discretize 0 ≤ pk ≤ 1 into 50 discrete levels
and denote them as i. Therefore, i ∈ {1, 2, · · · , 50}.

Step-2: Simulate the system model as given in Section II
with and without the watermarking for several test runs.

1) Attack start point Γ selected from a geometric
distribution with parameter ρ.

2) Likelihood ratios are evaluated using the distribu-
tions given in (26) to (29).

3) Evaluate and store pk for all k using (43). We
assume p0 = 0.

4) Convert the real valued pk into the discrete level
as defined in Step-1.

5) Two state transition matrices Pne and Pe are
estimated for the systems without and with the wa-
termarking, respectively. The maximum likelihood
estimation technique is used for the 50× 50 state
transition matrix evaluation.

Step-3: Run the following value iteration, see (46),
several times till it converges for each grid point of
the search space bounded by 0 ≤ λf ≤ 1000 and
0 ≤ λe ≤ 1.

Tk+1J = min
ud,k

[
g (ud,k) + Pne

[
TkJ

]
1{dk=0}1{sk=0}

+Pe
[
TkJ

]
1{dk=0}1{sk=1}

]
(46)

Here, T represents the transformation operator. J and
g (ud,k) are given as

J =
[
J(1) · · · J(50)

]T
, (47)

g (ud,k) =
[
gE,k (1, ud,k) · · · gE,k (50, ud,k)

]T
.

(48)

J(i) represents the cost function value when the initial
state is i. gE,k (i, ud,k) is derived from (42) by replacing
the discrete state i with a corresponding real value of
pk. The decision variable ud,k has three discrete level
to choose from, as given in Table I.

TABLE I: Decision variables
ud,k dk sk

1 0 0
2 0 1
3 1 0

Therefore, after completing the Step-3, we get the
optimum policy for each combination of λf and λe
from the search grid. Ud, a 50×Nu matrix, stores all
the optimal policies u∗d. Therefore, each column of Ud

holds the optimual policy u∗d for a particular pair of λf
and λe from the search grid of total Nu points.

Step-4: For each combination of λf and λe from the
search grid, we run the model simulation several times.
We decide about the addition of the watermarking and
the presence of an attack based on the value of pk and
u∗d,k from Ud. We then evaluate the ADD, FAR, and
ANW numerically from a large number of trials and
select the λf and λe values matching the requirements.

Remark 1: Depending on the selected parameters, there
could also be a three-threshold policy. Two thresholds, say
The and The2, for the selection of sk, and one threshold,
Thd, for the selection of dk. However, for most of the
practical cases [10], and also for the test case considered
in this paper, The2 ≥ Thd, which makes the third threshold
unnecessary.

IV. NUMERICAL RESULTS

We have considered a SISO system for the numerical
simulations. The system is open-loop unstable. All the pa-
rameters needed for the simulation are as follows, A = 1.1,
B = C = R = Q = W = 1, U = 0.4, σ2

z = 5, α = 0.5,
and ρ = 0.01.

Figure 4 shows the optimal decision variable u∗d with
respect to different values of p for three different values
of λe, while λf is kept fixed. We can observe two distinct
thresholds, The and Thd, which decide the addition of the
watermarking and the presence of an attack, respectively.
With the increase in λe, the threshold The also charges
to a higher value. Higher The reduces the amount of the
watermarking added, but at the same time, it increases the
ADD as shown later.

Fig. 4: Optimal policy for different λe but fixed λf .

Figure 5 shows the optimal decision variable u∗d with
respect to different values of p for three different values of
λf , while λe is kept fixed. Comparing the plots, we can
comment that λf controls the threshold Thd, which decides
whether the attack is present in the system or not. Higher λf
increases Thd, which in turn reduces the FAR, but increases
ADD as shown later. It is also observed from Figure 4 and
Figure 5 that λe does not have effect on Thd and at the same



time λf does not effect The.

Fig. 5: Optimal policy for different λf but fixed λe.
Figure 6 shows two trial runs for two different values of

λe, while λf is kept fixed. We have plotted pk, sk, dk, and the
actual attack point with respect to the time index k. Figure 7
shows the similar plots for two different values of λf , while
λe is kept fixed. We can observe that the number of times the
watermarking has been added before the attack point reduces
with the increase in λe and The.

(a)

(b)
Fig. 6: pk, sk, dk, and the actual attack point vs k, when a) λe = 0.1
and λf = 100, and b) λe = 0.2 and λf = 100.

Figure 8 plots ADD and FAR vs. σ2
e for the proposed

method, and ADD and FAR vs. σ2
e when the watermarking

is added all the time for two different values of λe, while
λf is kept fixed. Figure 9 shows the similar plots for two
different values of λf , while λe is kept fixed. We observe the
increase in ADD for the proposed method for the same FAR,
but the increase is not much. For the Fig. 8.a the increase
is only 12.2% at σ2

e = 0.99. The increase in λf and Thd
reduces FAR but it also increases ADD, see Fig. 9.

(a)

(b)
Fig. 7: pk, sk, dk, and the actual attack point vs k, when a) λf = 50
and λe = 0.2, and b) λf = 1000 and λe = 0.2.

(a)

(b)

Fig. 8: ADD and FAR (%) vs σ2
e , when a) λe = 0.1 and λf = 100,

and b) λe = 0.2 and λf = 100.

Figure 10 plots ∆LQG vs. σ2
e for the proposed method

and ∆LQG vs. σ2
e when the watermarking is added all the

time for two different values of λe, while λf is kept fixed.
We can certainly observe that we achieve a huge benefit in



(a)

(b)

Fig. 9: ADD and FAR (%) vs σ2
e , when a) λf = 50 and λe = 0.2,

and b) λf = 1000 and λe = 0.2.

terms of the control cost. For the Fig. 10.a the decrease in
∆LQG is 94.5% at σ2

e = 0.99. The increase in λe reduces
the ∆LQG further but at the cost of increased ADD.

(a)

(b)

Fig. 10: ADD and FAR (%) vs σ2
e , when a) λe = 0.1 and λf = 100,

and b) λe = 0.2 and λf = 100.

V. CONCLUSION

The proposed method reduces the ∆LQG to a significant
amount at the expense of only a small increase in the
ADD. We solve the optimization problem of minimizing the
ADD for the fixed thresholds on the FAR and ANW using
the value iteration. The dynamic programming solution of
the optimization problem provides two thresholds on the
posterior probability of attack. The numerical results from
the simulation of a SISO system illustrate the proposed
method in details. We also provide useful insights regarding
the choice of the Lagrangian multiplier values. As the future
scope, the proposed method can be extended for the more
general case of multi-input-multi-output (MIMO) systems.
Furthermore, the analytical expressions of the ADD, FAR,
and ∆LQG for the two threshold policy can be derived.
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