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Abstract—One of the most studied forms of attacks on the cyber-
physical systems is the replay attack. The statistical similarities of
the replayed signal and the true observations make the replay attack
difficult to detect. In this paper, we address the problem of replay
attack detection by adding watermarking to the control inputs and
then perform resilient detection using cumulative sum (CUSUM) test
on the joint statistics of the innovation signal and the watermarking
signal, whereas existing work considers only the marginal distribution
of the innovation signal. We derive the expression of the Kullback-
Liebler divergence (KLD) between the two joint distributions before
and after the replay attack, which is, asymptotically, inversely
proportional to the detection delay. We perform a structural analysis
of the derived KLD expression and suggest a technique to improve the
KLD for the systems with relative degree greater than one. A scheme
to find the optimal watermarking signal variance for a fixed increase
in the control cost to maximize the KLD under the CUSUM test is
presented. We provide various numerical simulation results to support
our theory. The proposed method is also compared with a state-of-
the-art method based on the Neyman-Pearson detector, illustrating
the smaller detection delay of the proposed sequential detector.

Index Terms—Replay attack, sequential detection, CUSUM test,
Networked control system.

I. INTRODUCTION

Nowadays, large-scale cyber-physical systems (CPS) are getting
deployed for intelligent transportation systems, manufacturing
industries, smart grids, etc. [1]. Along with their immense ad-
vantages, there are also growing concerns about the safety and
security of such systems. Attacks on the CPS can be a serious
threat to the sensitive user data security, availability and reliability
of critical resources, user’s physical safety, and monetary loss
[1]. Various techniques, such as data encryption, authentication,
firewall, cryptography, digital watermarking, etc. are normally
deployed to protect the cyber-layer of the CPS. Such protection
schemes may not be adequate to protect the CPS from attacks
on the physical layers as realised from different past incidents,
such as the famous Stuxnet attack [2]. In the Stuxnet attack, the
malware issued harmful control inputs to increase the pressure
of the centrifuges in a uranium enrichment plant in Iran [3].
It also replaced the true measurements with previously recorded
observations to remain stealthy. An attacker can launch a replay
attack without detailed knowledge about the system parameters
and control logic. The attacker can hijack a sensor node and record
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the observation for some time, and then replay it back by replacing
the true measurements at some later point in time. The attacker can
alter the system in some harmful way, for example, the attacker
can add harmful exogenous inputs and may remain stealthy during
the replay attack.

A widely applied technique for the replay attack detection is
to add a watermarking signal to the control inputs, and then
perform various statistical tests using the observations or the
innovation signal from the Kalman estimator [3]–[5]. In one
approach, χ2 statistics generated using the innovation signal is
compared with some threshold for attack detection [3], [6], [7].
In another approach, test statistics are built using the observation
data to perform a threshold check [4] or the Neyman-Pearson
(NP) test [8]. Addition of watermarking increases the probability
of detection, but at the same time, it increases the control cost
[3]. In [3], [9], optimal watermarking signals are designed which
maximizes the attack detectability for a fixed increase in the
control cost. In a different approach, the watermarking signal
is also added or multiplied with the observations before the
transmission. At the receiver, the authenticity of the observations
are first checked, and then the watermarking signal is filtered
out before feeding the observations to the estimator or controller
[10]–[13]. The watermarking signals for the observations could
be of different types, such as sinusoidal [10], multiplicative to
the observations [11], time-varying sinusoidal [12], random noise
[13], etc. Since the added watermarking signal is removed before
the observations are fed to the controller, such methods do not
increase the control cost. However, if the attacker can access the
signal before the addition of the watermarking, then these methods
may fail. In [14], the authors design a periodic watermarking
scheme for the replay attack detection, which reduces the cost
of adding the watermarking to the control inputs during all the
time before the attack. On the other hand, transfer entropy-
based causality countermeasures are introduced in [15] for four
different types of attack detections, including replay attacks, in
CPS without using the physical watermarking. Even though most
of the methods found in the literature studied the problem of replay
attack detection for linear time-invariant (LTI) systems, a detection
scheme is reported in [16] for time-varying systems by adding
time-varying dynamic watermarking. There are few other methods
found in the literature which do not use the watermarking for the
replay attack detection. In [17], timestamps are added to the data,
and in [18], a nonlinear element is inserted in the control loop
for the replay attack detection. A set membership-based approach
is followed in [19]. In addition to the research on replay attack
detections, researchers have also studied the closed-loop stability
of nonlinear systems under attack [20], the conditions on the
watermarking to guarantee detection of the replay attack on DC
microgrids [21], and the state estimation problem when the system
is under attack [22], [23].

Detection of an attack as early as possible is of immense



importance for the CPS to reduce the magnitude of the damage.
Most of the detection mechanisms reported in the literature do not
address the issue of detection delay of attacks explicitly. Moreover,
some of the reported methods do batch processing which makes
the detection delay dependent on the choice of the window size.
In addition to that, since the processes are expected to run for a
very long time before the attack takes place, the average run length
(ARL) between two false alarms is a better metric to use compared
to the false alarm rate (FAR) [24]. In contrast to methods based on
batch processing, sequential detection schemes recursively process
the data online. Furthermore, a typical class of sequential detection
schemes, the cumulative sum (CUSUM) test, directly considers
ARL when designing the detection threshold. Therefore, we have
applied a CUSUM test [25], [26] using the joint distributions
of the innovation signal and the watermarking signal before and
after the replay attack, where the added watermarking signal is
independent and identically distributed (iid). The detection delay
is asymptotically inversely proportional to the Kullback–Leibler
divergence (KLD) measure between the joint distributions before
and after the attack, [25], [26].

In a related paper [27], we have extensively studied two
CUSUM tests, optimal CUSUM and sub-optimal CUSUM for the
quickest detection of data deception attacks. In the data deception
attack model considered in [27], the attacker replaces the true
observation with a Gaussian stochastic process. In the current
paper, we reformulated the problem and extend the work in [27]
to detect replay attacks on the CPS. Our main contributions are as
follows.

(i) We have reformulated the sub-optimal CUSUM test from
[27] for the replay attack detection and investigated its perfor-
mance in terms of the average detection delay (ADD) and the
increase in the control cost for a fixed upper bound on the ARL.

(ii) We have derived an expression for the KLD between the
joint distributions before and after the replay attack.

(iii) We have studied the effect of relative degree on the KLD
for the replay attack case and exhibited a way to improve the KLD
for systems with a relative degree greater than one.

(iv) A technique to optimize the watermarking signal variance,
which maximizes the KLD for a fixed upper bound on the increase
in the control cost is also proposed.

The paper is organized as follows. The system model and the
attack model are described in Section II. Section III provides the
replay attack detection scheme, the KLD expression for the replay
attack, and the technique to improve the KLD for systems with
a relative-degree greater than one. A technique for optimizing
the watermarking signal variance is also discussed in Section III.
Section IV provides associated numerical results and Section V
concludes the paper.

II. SYSTEM AND ATTACK MODEL

This section discusses the system models during normal opera-
tions and under replay attacks used in this paper.

A. System Model during Normal Operations

Figure 1: Schematic diagram of the system during normal operation.

Figure 1 shows the schematic diagram of the network control
system (NCS) under normal operation employed for this paper.
The system is modelled as,

xk+1 = Axk + Buk + wk, (1)
yk = Cxk + vk. (2)

Here xk ∈ IRn, uk ∈ IRp, and yk ∈ IRm are the state, input
vector, and output vector at the k-th time instant, respectively.
wk ∈ IRn ∼ N (0,Q) and vk ∈ IRm ∼ N (0,R) are the iid
process noise and observation noise, respectively. A ∈ IRn×n,
B ∈ IRn×p, C ∈ IRm×n, Q ∈ IRn×n, and R ∈ IRm×m. The
noise vectors vk and wk are mutually independent, and both are
independent of the initial state vector, x0. We assume the system
is stabilizable and detectable. We also assume that the system has
been operational from k = −∞, thus the system is at a steady-
state from k ≥ 0. The states are estimated using a Kalman filer as
follows,

x̂k|k−1 = Ax̂k−1|k−1 + Buk−1, (3)
x̂k|k = x̂k|k−1 + Kγk, (4)

where x̂k|k−1 = E[xk|Ψk−1] and x̂k|k = E[xk|Ψk] are the
predicted and filtered state estimates, respectively. E[·] denotes
the expected value, and Ψk is the set of all measurements up to
time k. The innovation γk and the steady state Kalman filter gain
K are given by

γk = yk −Cx̂k|k−1, (5)

K = PCT
(
CPCT + R

)−1
, (6)

where P = E
[
(xk − x̂k|k−1)(xk − x̂k|k−1)T

]
is the steady-state

error covariance matrix obtained from the following algebraic
Riccati equation,

P = APAT + Q−APCT
(
CPCT + R

)−1
CPAT . (7)

The control input uk is generated by minimizing the infinite
horizon LQG cost, [3], where the optimal u∗k is

u∗k = Lx̂k|k, (8)

L = −
(
BTSB + U

)−1
BTSA, (9)

where S is the solution to the following algebraic Riccati equation,

S = ATSA + W −ATSB
(
BTSB + U

)−1
BTSA. (10)

Here, W ∈ IRn×n and U ∈ IRp×p are positive definite diagonal
weight matrices, which are used to formulate the LQG cost [3].

B. Attack Model

As illustrated in the schematic diagram of the system under
replay attack in Fig. 2, the attacker has access to the true observa-
tions from the system and can record the true observations for a
finite but sufficiently long time interval in a buffer to use them at a
later point in time. Under the replay attack, the true observation yk
are replaced by the delayed version of the observation, i.e., yk−k0 ,
where k0 represents the delay. The older observation yk−k0 was
recorded by the attacker k0 time units ago during normal system
operation for a finite time interval. Under practical situations, the
value of k0 may vary depending on when the compromised sensors
become accessible to the attacker. Since we have assumed that the



system has been operational from k = −∞, and it is at a steady-
state from the beginning of the start of observation, i.e., k ≥ 0,
the exact value of k0 does not have any effect on the CUSUM
statistics (14) and the KLD (33). The attacker does not need to
have any knowledge about the system parameters or the control
logic to launch the replay attack. We assume the attack to start at
time k = ν, which is deterministic but unknown. The innovation
signal γ̃k during the replay attack becomes as follows

γ̃k = yk−k0 −Cx̂Fk|k−1, (11)

where x̂F denotes the estimated state when the system is under
attack.

Figure 2: Schematic diagram of the system under replay attack.

III. REPLAY ATTACK DETECTION

This section discusses the replay attack detection scheme, the
derivations of the KLD and some other relevant quantities. It also
shows a way to optimize the watermarking signal variance, and
how to improve the KLD for systems with relative degree greater
than one.

A. Detection Scheme

To detect the replay attack, we perform the following two main
steps.
Step-1: Add an iid watermarking signal ek ∼ N (0,Σe) to the
optimal LQG control input u∗k yielding

uk = u∗k + ek. (12)

Step-2: Perform the sub-optimal CUSUM test using the joint
distributions f(γk, ek−1) and f̃(γ̃k, ek−1) of the innovation signal
and the watermarking signal, before and after the attack, respec-
tively, as stated in Proposition 1. We compare the CUSUM statis-
tics with a threshold to select from the following two hypotheses,
• H0: No attack. The estimator receives the true observation

yk
• H1: Attack. The estimator receives the delayed observation

yk−k0 .
Remark 1. In comparison with the sub-optimal CUSUM test used
in this paper for replay attack detection, see (14), the test statistics
for the optimal CUSUM test would be [27],

gdk = max

0, gdk−1 + log
f̃
(
γ̄k, ek−1| {γ̄}k−11 , {e}k−21

)
f (γ̄k, ek−1)

 ,

(13)

where {γ̄}k−11 = {γi : 1 ≤ i < ν} ∪ {γ̃i : ν ≤ i ≤ k − 1} and
{e}k−21 = {ei : 1 ≤ i ≤ k − 2}. The innovation signal becomes
dependent on it’s previous samples and watermarking signal after
the attack. The derivations of the closed-form expressions for the
dependent mean and variance of the innovation signal become
extremely complex for the replay attack scenario. On the other
hand, if we ignore the dependency of γ̃k on it’s past values, then
the CUSUM statistics becomes simpler as stated in Corollary 1.1

of [27]. However, under such an assumption, the CUSUM test will
not remain optimal.
Proposition 1. The sub-optimal CUSUM test statistics gk to detect
replay attacks is evaluated using Corollary 1.1 from [27] as
follows,

gk = max

(
0, gk−1 + log

f̃ (γ̄k, ek−1)

f (γ̄k, ek−1)

)
, (14)

where γ̄k = γk before attack, and γ̄k = γ̃k after attack. f(·) and
f̃(·) denote the probability density functions (PDF) before and
after the attack, respectively. The decision of attack or no attack
is made based on the following,

H0 : Selected, when gk < log(ARLh)

H1 : Selected, when gk ≥ log(ARLh).
(15)

Here, ARLh is the user selected threshold on ARL, ARL ≥
ARLh.
To implement the proposed CUSUM test, the log-likelihood ratio
in (14) needs to be computed. In the following, we characterize
the probability density functions and derive their expressions. The
innovation signal γk during the normal operation of the system is
uncorrelated to the watermarking signal, see (16). However, on the
contrary, the innovation signal γ̃k under the replay attack becomes
dependent on the watermarking signal, see (17).

γk = yk −Cx̂k|k−1

= CA
(
xk−1 − x̂k−1|k−1

)
+ Cwk−1 + vk, (16)

γ̃k = yk−k0 −Cx̂Fk|k−1 (17)

= Cxk−k0 + vk−k0 −C (A + BL) x̂Fk−1|k−1 −CBek−1.

Furthermore, let γe,k =
[
γTk , e

T
k−1
]T

and γ̃e,k =
[
γ̃Tk , e

T
k−1
]T

.
Then, the PDFs before and after the attack will be as follows,

f (γk, ek−1) = N (0,Σγe) and f̃ (γ̃k, ek−1) = N (0,Σγ̃e) ,

where

Σγe =

[
Σγ 0m×p

0p×m Σe

]
and Σγ̃e =

[
Σγ̃ −CBΣe

−ΣeB
TCT Σe

]
.

Also, γk ∼ N (0,Σγ) and γ̃k ∼ N (0,Σγ̃) ,where

Σγ = CPTC + R. (18)

Here, N (·) denotes normal distribution. −CBΣe is the covariance
matrix between γ̃k and ek−1, which can be derived easy by multi-
plying eTk−1 to both sides of (17), and then taking the expectation
of both sides. Similarly, (18) can be derived by multiplying γTk to
both sides of (16), and then taking the expectation of both sides. In
both the derivations, we need to utilise the appropriate information
regarding uncorrelated variable pairs.
To derive the expression of Σγ̃ , we need to evaluate the covariance
of the attack signal, i.e., yk−k0 , and the correlation between xk−1
and yk−k0 , see Lemma 1. Now, for the replay attack, the attack
signal was generated by the same healthy system given in Sub-
section II-A k0 time units ago. In order to simplify the derivation,
we first transform the state-space representation of the original
system given in (1)-(2) into a modified partially observed Gauss
Markov process (GMP) as given in (19)-(20). In other words,
(1)-(2) and (19)-(20) both represent the same system dynamics
with different state-space definitions, and we can say that the
attack signal yk−k0 from (1)-(2) and the output zk from (19)-(20)



both will have identical statistical properties. Therefore, instead of
using yk−k0 , we derive the variance of zk, i.e., Ezz(0), and the
correlation between xk−1 and zk, i.e., Exz(−1), see Lemma 1.
The relationships of the states and parameters between the two
representations of the same system dynamics are derived as in
(21)-(25), with the GMP being described as

xa,k = Aaxa,k−1 + wa,k−1, (19)
zk = Caxa,k, (20)

where xa,k ∈ IRna and wa,k ∼ N (0,Qa) are the hidden state
vector and iid noise vector, respectively, at the k-th time instant.
xa,k, wa,k, Aa, Ca and Qa for the GMP will take the following
forms,

xa,k =
[
xk−k0 x̂k−k0|k−k0−1 vk−k0

]T
, (21)

wa,k =
[
Bek−k0 + wk−k0 Bek−k0 vk−k0+1

]T
, (22)

Aa = A + BLKC BL (In −KC) BLK
(A + BL) KC (A + BL) (In −KC) (A + BL) K

0 0 0

 ,
(23)

Ca =
[
C 0 In

]
,

(24)

Qa =

BΣeB
T + Q BΣeB

T 0
BΣeB

T BΣeB
T 0

0 0 R

 . (25)

In is the identity matrix of size n. The derivations follow directly
from the comparison of the parameters of (1)-(2) and (19)-
(20). Note that the state-space description (19)-(20) is simply
a modelling exercise in representing yk−k0 , the attack signal,
through a virtual linear state-space representation, allowing us to
use the machinery of [27]. The attacker does not need to have
access to this model, (19)-(20), and simply substitutes the true
measurements with a previously recorded sequence.
Lemma 1. The covariance matrix Σγ̃ of the innovation signal γ̃
after the replay attack will take the following form for the attack
model given in (19)-(20),

Σγ̃ = Ezz(0)−C(A + BL)Exz(−1)

− [C(A + BL)Exz(−1)]
T

+ CBΣeB
TCT

+ C(A + BL)ΣxF z(A + BL)TCT

+ C(A + BL)ΣxF e(A + BL)TCT , (26)

where

Exz(−1) =

∞∑
i=0

AiKCaA
i+1
a Exa (0) CT

a , (27)

Ezz(0) = E
[
zkz

T
k

]
, Exz(−1) = E

[
xk−1z

T
k

]
, and Exa(0) =

E
[
xa,kx

T
a,k

]
. A = (In −KC) (A + BL). ΣxF z and ΣxF e are

the solutions to the following Lyapunov equations,

AΣxF zAT −ΣxF z + KEzz(0)KT +AExz(−1)KT

+
(
AExz(−1)KT

)T
= 0, and (28)

AΣxF eAT −ΣxF e + (In −KC) BΣeB
T (In −KC)

T
= 0.

(29)

Since A is assumed to be strictly stable, the Lyapunov equations
(28) and (29) will have unique solutions [28].

Proof. The proof of Lemma 1 is provided in Appendix A.

Based on the derivations that followed Proposition 1, we finally
evaluate the CUSUM test statistics gk at each time instant as
follows,

gk = max

0, gk−1 + log
| Σγ̃e |1/2 exp

(
−0.5γ̄Te,kΣ

−1
γ̃e
γ̄e,k

)
| Σγe |1/2 exp

(
−0.5γ̄Te,kΣ

−1
γe γ̄e,k

)
 .

(30)
Here, | · | denotes the determinant of a matrix. γ̄e,k will be γe,k
before the attack, and after attack γ̄e,k = γ̃e,k.

B. Asymptotic Detection Performance

In this subsection, we study the asymptotic performance of the
proposed replay attack detection scheme using supremum of ADD
(SADD) and ARL as the two metrics. We analyse the quantities
that affect the detector performance and alter a few of them by
proper designing as discussed in Sub-section III-C and III-D, thus
improving the performance.
The SADD is defined as

SADD , sup
1≤ν<∞

Eν [Tcs − ν|Tcs > ν] . (31)

Here Eν [·] denotes the expectation with respect to the distribution
of the test data, i.e., the innovation and the watermarking signals
when the system is under attack. Tcs is the time instant of attack
detection. SADD is asymptotically inversely proportional to the
KLD, D

(
f̃ , f

)
, between the two distributions f̃(·) and f(·), see

Theorem 8.2.3 and Section 2 from [25] and [26], respectively, as
follows,

SADD → log(ARLh)

D
(
f̃ , f

) , as ARLh →∞. (32)

Here, D
(
f̃ , f

)
takes the following form [27],

D
(
f̃ , f

)
=

1

2

{
tr
(
Σ−1γ Σγ̃

)
−m

− log
| Σγ̃ −CBΣeB

TCT |
| Σγ |

}
. (33)

The average run length is defined as, ARL , E∞ [Tcs], where
E∞[·] denotes the expectation with respect to the distribution of
the test data when no attack is present. From (32) and (33), we
can comment that KLD and subsequently SADD are dependent
on the watermarking signal variance Σe. We have used the KLD
expression in (33) to find the optimal Σe that maximizes the KLD
for a given upper bound on the increase in the control cost in the
following Subsection III-C.
Remark 2. As given in Corollary 2.1 in [27], the KLD for the
suboptimal CUSUM case is lower compared to that of the optimal
CUSUM case. Such reduction in KLD increases the detection delay
for the suboptimal CUSUM case.

C. Optimal watermarking signal variance

The addition of watermarking increases the KLD, but at the
same time, it also increases the control cost. The increase in LQG



control cost, ∆LQG, due to the addition of watermarking is given
in [27] as follows,

∆LQG = tr
[(

BTΣLB + U
)
Σe

]
, (34)

where ΣL is the solution to the Lyapunov equation

(A + BL)
T

ΣL (A + BL)−ΣL + LTUL + W = 0. (35)

Therefore, we want to find the optimal Σe that will maximize
the KLD for a given fixed threshold J on the ∆LQG. According
to the Theorem 5 from [27], the optimal Σe will have only one
non-zero eigenvalue. Therefore, we search for the optimum Σe

within the class of rank one positive semi-definite matrices with
the following structure,

Σe = vλv
T
λ , where vλ =

√
λeve. (36)

Here, λe is the non-zero eigenvalue and ve is the corresponding
eigenvector. Now, we define the optimization problem as,

max
vλ

D
(
f̃ , f

)
s.t. ∆LQG ≤ J.

(37)

We have solved the optimization problem using the interior point
method [29]. It can also be solved by other non-convex optimizers,
such as sequential quadratic programming (SQP) [30], etc. Since
the cost function is non-concave, the solution may only be a local
optimum.

D. Systems with High Relative Degree

The system given in (1)-(2) is said to have relative degree dr
provided [31]

CAiB = 0, for i < dr − 1, and

CAiB 6= 0, for i = dr − 1.
(38)

If the system under consideration has a relative degree dr = ke,
where ke ≥ 2, then CB becomes 0. Therefore, for such systems,
the CBΣeB

TCT term in the KLD expression (33) will vanish,
which will reduce the overall KLD. In such a situation, the joint
distribution of the innovation signal γk or γ̃k and the delayed
version of the watermarking signal, i.e., ek−ke , can improve
the KLD. Increase in KLD means faster attack detection. The
proposed CUSUM test and the corresponding KLD using the joint
distribution of the innovation signal and the delayed watermarking
signal ek−ke are provided in the following theorem.
Theorem 1. If the system has a relative degree of dr = ke, and the
joint distribution of the innovation signal and the watermarking
signal ek−ke is considered for the CUSUM test, then the test
statistics, gke,k, and the KLD, Dd

(
f̃ke , fke

)
, between the normal

system and the system under attack will be as follows

gke,k = max

(
0, gke,k−1 + log

f̃ke (γ̄k, ek−ke)

fke (γ̄k, ek−ke)

)
(39)

Dd

(
f̃ke , fke

)
=

1

2

{
tr
(
Σ−1γ Σγ̃

)
−m

− log
| Σγ̃ −CAke−1BΣeB

T (Ake−1)TCT |
| Σγ |

}
, (40)

where fke(·) and f̃ke(·) denote the joint probability density func-
tions (PDF) of innovation signal and ek−ke , before and after
the attack, respectively, see (41) and (42). The expressions for

Σγ and Σγ̃ are the same as in (18) and (26), respectively. Let
γkee,k =

[
γTk , e

T
k−ke

]T
and γ̃kee,k =

[
γ̃Tk , e

T
k−ke

]T
. Then, the PDFs

before and after the attack will be as follows,

fke (γk, ek−ke) = N
(
0,Σγkee

)
and (41)

f̃ke (γ̃k, ek−ke) = N
(
0,Σγ̃kee

)
,where (42)

Σγkee
= Σγe and (43)

Σγ̃kee
=

[
Σγ̃ −CAke−1BΣe

−ΣeB
T
[
Ake−1

]T
CT Σe

]
. (44)

Proof. To prove Theorem 1, we only need to show that
E
[
γke

T
k−ke

]
= 0 and E

[
γ̃ke

T
k−ke

]
= −CAke−1BΣe, which are

derived in Appendix B.

Remark 3. The expression of Σγ̃ (26) can be simplified using the
information CB = 0 for a system with dr ≥ 2.

E. CUSUM vs. NP Detector

In this paper, one of our research objectives is to compare
the proposed sequential detection based method (CUSUM) with a
member of non-sequential based methods. The optimal NP based
χ2 detector used for the comparison is a non-sequential detector.
The compared method was first introduced in 2009 [32], and then
improved upon several years [3]. The NP based χ2 detector is
considered to be one of the state-of-the-art methods for replay
attack detections in dynamical systems. On the other hand, the
CUSUM test is the quickest sequential detector in the sense that
it minimizes the worst-case ADD, i.e., SADD for a fixed lower
limit on ARL [25]. That means the CUSUM test will perform
better than the non-sequential based methods such as NP based χ2

detectors in terms of the average detection delay. In this paper, we
have ignored the dependency of γ̃k on its previous values, which
makes the corresponding CUSUM test a non-optimal CUSUM.
However, we have shown by simulation in Sub-section IV-D that
the proposed non-optimal CUSUM based replay attack detector is
performing better than the NP based χ2 detector [3].
The watermarking signal is taken to be iid, and the Σe is optimized
for both cases. In [3], the optimal NP detector rejects the H0

hypothesis in favour of H1 if

gNP,k (γk, ek−1, · · · ) = γTk Σ−1γ γk

− (γk − µNP,k)
T

(Σγ + Σf )
−1

(γk − µNP,k) ≥ η, (45)

where µNP,k = −C

k∑
i=−∞

Ak−iBei, (46)

Σf = CLfCT , and (47)

Lf = ALfAT + BΣeB
T . (48)

The ADD is estimated as,

ADDNP = E [inf {k : gNP,k(·) ≥ η}] , (49)

where η is the user selected threshold. To compare the methods
under study on the same ground, we have derived the thresholds
for the test statistics for both the tests by keeping a fixed lower
limit on ARL, i.e., ARLth. The proposed CUSUM test inherently
uses ARLth information (15) to derive the threshold for the test
statistics. However, for the NP-based method, the threshold η is
derived from the Monte-Carlo simulation using ARL ≥ ARLth



as a constraint, and selecting the lowest feasible threshold, as to
maximise the probability of detection.

IV. NUMERICAL RESULTS

In this section, we illustrate the replay attack detection method-
ology proposed in this paper using three different system models.
The three different systems are System-A: A second-order open-
loop unstable multiple inputs and single output (MISO) system,
System-B: A fourth-order open-loop stable multiple inputs and
multiple outputs (MIMO) system, and System-C: A second-
order open-loop unstable MISO system with relative degree two.
System-B is a linearized minimum phase quadruple tank system
taken from [33]. Only the level sensor gains are increased to make
the magnitude of the product CB numerically significant. The
system parameters are provided as follows.
For the System-A and System-B, ARLh = 1000. For the System-
C, ARLh = 100.
System-A parameters:

A =

[
0.75 0.2
0.2 1.0

]
B =

[
0.9 0.5
0.1 1.2

]
C =

[
1.0 −1.0

]
Q = diag

[
1 1

]
R = 1 W = diag

[
1 2

]
U = diag

[
0.4 0.7

]
System-B parameters:

A =


0.9683 0 0.0819 0

0 0.9780 0 0.06377
0 0 0.9167 0
0 0 0 0.9355



B =


0.1638 0.004
0.002 0.1242

0 0.0917
0.0604 0

 C =

[
5 0 0 0
0 5 0 0

]

Q = diag
[
0.25 0.25 0.25 0.25

]
R = diag

[
0.5 0.5

]
W = diag

[
5 5 1 1

]
U = diag

[
2 2

]
System-C parameters:

B =

[
0.9 0.5
1.3 0.72

]
C =

[
1.3 −0.9

]
The rest of the parameters are the same as System-A.
To evaluate the SADD for each ∆LQG value, first, we have
incremented the attack start point ν from 1 to 1000 with a step
size of 1. For each attack start point ν, we have estimated the
ADD over 1000 Monte-Carlo trials. Finally, we have evaluated
the SADD as the highest ADD (worse case ADD) over the range
of ν.

A. Replay attack detection

Figure 3 shows the trade-off between the SADD and the increase
in ∆LQG when the System-B is under a replay attack. We plot the
derived SADD using the theory developed in this paper, and the
estimated SADD using the simulated data, where Σe is assumed
to be diagonal and all the watermarking signals have equal power.
Therefore, we can detect an attack early at the expense of an
increased control cost. Figure 3 also illustrates that it is hard to
detect a replay attack with low watermarking signal power. This
is implicit in SADD, but there is a sharp increase observed before
∆LQG ≈ 0.8, which corresponds to Σe = diag

[
0.29 0.29

]
.

However, the sharp corner point at ∆LQG ≈ 0.8 is the effect of
limited data points on the SADD vs ∆LQG curve.

Figure 3: SADD vs. ∆LQG plot for System-B under replay attack.

B. Optimum and non-optimum Σe

Figure 4 shows the SADD vs ∆LQG plots for System-A using
the optimized Σe and a diagonal Σe with equal signal power when
the system is under a replay attack. The optimum LQG value for
the system before the attack and without the added watermarking
is 38.03. It is evident that optimizing Σe improves the SADD for
a fixed upper threshold on ∆LQG. We can also say that the same
SADD can be achieved for a much reduced ∆LQG.

Figure 4: SADD vs. ∆LQG plot for System-A under replay attack with
optimum and non-optimum Σe.

C. System with higher relative degree

Figure 5 shows the benefit of using the delayed version of
watermarking signal, i.e., ek−ke for a system with relative degree
dr = ke as discussed in Theorem 1. System-C with relative degree
dr = 2 is used to generate the plots of Fig. 5. We can see
reductions in ∆LQG to achieve the same SADD between any
two points on the ∆LQG axis.

Figure 5: SADD vs. ∆LQG plots for System-C with relative degree 2.

D. Comparison with optimal NP-based detector

The left axis of Fig. 6 shows the tradeoff between the ADD and
the increase in ∆LQG for System-A under the proposed CUSUM



test and the NP-based method reported in [3] (see Remark-II) for
the detection of replay attacks. We plot the derived SADD using
the theory developed in this paper, the estimated SADD applying
the sub-optimal CUSUM test on the simulated data, and the
estimated ADD applying the test reported in [3] on the simulated
data using optimum Σe. The higher ∆LQG portion of the plot
is zoomed. The right axis of Fig. 6 shows the corresponding
simulated ARLs for both the tests. It is clear from the figure that
we can achieve lower detection delay for the same LQG loss with
the method proposed in this paper compared to the one reported
in [3]. ARL increases with the ∆LQG, i.e., watermarking signal
power, for the proposed method, whereas it does not change much
for the method reported in [3].

Figure 6: ADD and ARL vs. ∆LQG plot for System-A under proposed
CUSUM test and NP test.

V. CONCLUSION

We have addressed the problem of resilient replay attack
detection using the CUSUM test. The detection delay and the
corresponding increase in the control cost are studied. The KLD
expression between the distributions before the attack and after the
replay attack is derived. The KLD reduces for the systems with
relative-degree higher than one. We have proposed a technique
of using a delayed version of the watermarking to improve the
KLD for such systems. The simulation results shown are in close
agreement with the theory presented in the paper. We have also
discussed a way to optimize the watermarking signal variance to
maximize the KLD under the replay attack for a fixed increase in
the control cost.

APPENDIX A
DERIVATION OF Σγ̃

Since the measurement yk−k0 from (1)-(2) is stationary, zk from
(19)-(20) will also be stationary, since their statistical properties
are identical. Therefore, the initial state covariance Exa(0) will
be a constant, given by the solution to the following Lyapunov
equation.

Exa(0) = AaExa(0)AT
a + Qa. (50)

The expression of Σγ̃ = E
[
γ̃kγ̃

T
k

]
is derived as follows. Using

(17), and applying the knowledge that ek−1 is uncorrelated with
zk and x̂Fk−1|k−1, we get the following expression of Σγ̃ ,

Σγ̃ = E
[
zkz

T
k

]
−C (A + BL)E

[
x̂Fk−1|k−1z

T
k

]
−
(
C (A + BL)E

[
x̂Fk−1|k−1z

T
k

])T
+ CBΣeB

TCT (51)

+ C (A + BL)E

[
x̂Fk−1|k−1

(
x̂Fk−1|k−1

)T]
(A + BL)

T
CT .

E
[
x̂Fk−1|k−1z

T
k

]
is calculated as follows. First, using (12), we

evaluate

x̂Fk−1|k−1 = Kzk−1 +Ax̂Fk−2|k−2 + (In −KC) Bek−2, (52)

where A = (In −KC) (A + BL). We define

Exz (−k0) , E
[
x̂Fk−k0|k−k0z

T
k

]
= E [(Kzk−k0+

Ax̂Fk−k0−1|k−k0−1 + (In −KC) Bek−k0−1) zTk
]

, [using (52)]

= KEzz (−k0) +AExz (−k0 − 1) , (53)

where ek−k0−1 and zk are uncorrelated, and Ezz (−k0) =

E
[
zk−k0z

T
k

]
. Exa (−k0) = Exa (k0) , E

[
xa,kx

T
a,k−k0

]
is

evaluated as

Exa (−1) = AaExa (0) , [wa,k and xa,k uncorrelated].

Similarly, Exa (−2) = AaExa (−1) = A2
aExa (0) , and

Exa (−k0) = Ak0
a Exa (0) . (54)

The system matrix Aa is assumed to be stable because the attacker
will always try to generate fake observations which are bounded
and will mimic the true observations to remain stealthy. For a
stable Aa, Ak0

a → 0, as k0 →∞. Therefore,

Exa (−k0)→ 0, as k0 →∞. (55)

The expression for Ezz(−k0) = Ezz(k0) , E
[
zk−k0z

T
k

]
is

derived using (20) and (55) as

Ezz(−k0) = CaExa(−k0)CT
a = CaA

k0
a Exa (0) CT

a (56)

Using (53) and (56), we can write the expression of Exz(−1) as

Exz (−1) = KEzz (−1) +AExz (−2) (57)

= KCaAaExa (0) CT
a +AKCaA

2
aExa (0) CT

a +A2Exz (−3) .

Repeating the same technique, Exz (−1) will take the following
form,

Exz (−1) =

∞∑
i=0

AiKCaA
i+1
a Exa (0) CT

a . (58)

Exz (−1) can be evaluated numerically by taking a large number
of terms for the summation (58), until the rest of the terms become

negligible. Using (52), ExF xF (0) , E

[
x̂Fk−1|k−1

(
x̂Fk−1|k−1

)T]
is evaluated as follows.

ExF xF (0) = KE
[
zk−1z

T
k−1
]
KT +AE

[
x̂Fk−2|k−2z

T
k−1

]
KT

+
(
AE

[
x̂Fk−2|k−2z

T
k−1

]
KT
)T

+AE
[
x̂Fk−2|k−2

(
x̂Fk−2|k−2

)
T
]
AT + (In −KC) BE

[
ek−2e

T
k−2
]
BT (In −KC)

T
.

Therefore, ExF xF (0) is the solution to the following Lyapunov
equation,

AExF xF (0)AT −ExF xF (0) + KEzz(0)KT

+AExz(−1)KT +
(
AExz(−1)KT

)T
+

(In −KC) BΣeB
T (In −KC)

T
= 0, [(56) used].

(59)

ExF xF (0) is divided into two parts, ΣxF z and ΣxF e which are
independent of the watermarking signal and the fake observations,



respectively. ΣxF z and ΣxF e are the solution to the following
Lyapunov equations,

AΣxF zAT −ΣxF z + KEzz(0)KT +AExz(−1)KT

+
(
AExz(−1)KT

)T
= 0,

AΣxF eAT −ΣxF e + (In −KC) BΣeB
T (In −KC)

T
= 0,

and ExF xF (0) = ΣxF z + ΣxF e. (60)

Using (56) and (60), we can rewrite the expression for Σγ̃ as given
in (26).

APPENDIX B
PROOF OF THEOREM 1

Assumption: System has relative degree dr = ke. Since γk
before the attack is iid, E

[
γke

T
k−ke

]
= 0. Applying (38) in (17),

and replacing yk−k0 by zk, since they both have same statistical
properties, we get,

γ̃k = zk −CAx̂Fk−1|k−1. (61)

Therefore, E
[
γ̃ke

T
k−ke

]
= −CAE

[
x̂Fk−1|k−1e

T
k−ke

]
, (62)

and x̂Fk−1|k−1 = Kzk−1 +Ax̂Fk−2|k−2 + Bek−2, (63)

where ek−ke is uncorrelated to zk. Using (63) recursively, we
derive

x̂Fk−1|k−1 =

ke∑
i=2

(
Ai−2Kȳk−i+1 +Ai−2Bek−i

)
+ (64)

Ake−1x̂Fk−ke|k−ke [ȳk = yk if k < ν, and ȳk = zk otherwise.]

Applying (64) in (62) and using (38), we get

E
[
γ̃ke

T
k−ke

]
= −CAAke−2BΣe (65)

where ek−ke is uncorrelated to x̂Fk−ke|k−ke and zk−i+1. Applying
multinomial theorem on Ake−1 = (A−KCA + BL)

ke−1 and
using (38), we get

E
[
γ̃ke

T
k−ke

]
= −CAke−1BΣe. (66)
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