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Abstract— This paper proposes a game-theoretic approach
to address the problem of optimal sensor placement against
an adversary in uncertain networked control systems. The
problem is formulated as a zero-sum game with two players,
namely a malicious adversary and a detector. Given a protected
performance vertex, we consider a detector, with uncertain
system knowledge, that selects another vertex on which to place
a sensor and monitors its output with the aim of detecting the
presence of the adversary. On the other hand, the adversary,
also with uncertain system knowledge, chooses a single vertex
and conducts a cyber-attack on its input. The purpose of the
adversary is to drive the attack vertex as to maximally disrupt
the protected performance vertex while remaining undetected
by the detector. As our first contribution, the game payoff of
the above-defined zero-sum game is formulated in terms of the
Value-at-Risk of the adversary’s impact. However, this game
payoff corresponds to an intractable optimization problem.
To tackle the problem, we adopt the scenario approach to
approximately compute the game payoff. Then, the optimal
monitor selection is determined by analyzing the equilibrium
of the zero-sum game. The proposed approach is illustrated via
a numerical example of a 10-vertex networked control system.

I. INTRODUCTION

Networked control systems have been playing a crucial
role in modeling, analysis, and operation of real-world
large-scale interconnected systems such as power systems,
transportation networks, and water distribution networks.
Those systems consist of multiple interconnected subsystems
which generally communicate with each other via insecure
communication channels to share their information. This
insecure protocol may leave the networked control systems
vulnerable to cyber-attacks such as denial-of-service and
false-data injection attacks [1], inflicting serious financial
loss and civil damages. Reports on actual damages such as
Stuxnet [2] and Industroyer [3] have described the catas-
trophic consequences of such cyber-attacks for an Iranian
nuclear program and a Ukrainian power grid, respectively.
Motivated by the above observation, cyber-physical security
has increasingly received much attention from control society
in recent years.
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One of the most popular security metrics is the game-
theoretic approach that has been successfully applied to deal
with the problem of robustness, security, and resilience of
networked control systems [4]. This approach affords us to
address the robustness and security of networked control
systems within the common well-defined framework of H∞
robust control design. Further, many other concepts of games
considering networked systems subjected to cyber-attacks
such as dynamic [5], stochastic [6], network monitoring [7],
[8], and zero-sum games [9] have been recently studied.
Although the above games were successful in studying
control systems subjected to cyber-attacks such as denial-
of-service and stealthy data injection attacks, the full system
model knowledge was assumed to be available to both the
malicious adversary and the detector. This assumption might
be restrictive when it comes to large-scale interconnected
systems which can consist of a huge number of subsystems.
This can be explained by a variety of facts such as (i) limited
availability of computational resources for modeling, (ii)
limited availability of modeling data, and (iii) modeling er-
rors. Thus, the adversary and the detector might have limited
system knowledge instead of accurate system parameters,
which will be addressed throughout this paper.

In this paper, we deal with the problem of optimal sensor
placement against an adversary in an uncertain networked
control system which is represented by interconnected ver-
tices. Given a protected performance vertex, the detector
monitors the system by selecting a single monitor vertex and
placing a sensor to measure its output with the purpose of
detecting cyber-attacks. Meanwhile, the adversary chooses a
single vertex to attack and directly injects attack signals into
its input via the wireless network. The aim of the adversary
is to steer the attack vertex as to maximally disrupt the
protected performance vertex while remaining undetected by
the detector. The contributions of this paper are the following

1) The problem of optimal sensor placement against the
adversary is formulated as a zero-sum game between
two strategic players, i.e., the adversary and the detec-
tor, with the same uncertain system knowledge.

2) Due to the uncertainty, the game payoff of the zero-
sum game, which is a min-max optimization problem,
is computationally intractable [10]. To deal with the
problem, we adopt the scenario approach [11] to ap-
proximately compute the above game payoff.

3) We show that the existence of a finite solution to the
problem is related to the system-theoretic properties of
the dynamical system, namely its invariant zeros and
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Fig. 1. Visualization of a zero-sum game between a detector and an
adversary in a networked control system.

relative degrees.
4) The solutions to the problem of the optimal sensor

placement are provided by investigating the pure and
the mixed-strategy equilibrium of the zero-sum game
in a numerical example.

We conclude this section by providing the notations which
are used throughout this paper. The problem description
is given in Section II. Thereafter, Section III formulates
the problem of optimal sensor placement as a zero-sum
game with the game payoff based on a risk metric. The
evaluation of the game payoff is carried out in Section IV.
Section V presents a numerical example of the zero-sum
game between an adversary and a detector and computes the
optimal monitor selection based on the mixed-strategy Nash
equilibrium. Concluding remarks are provided in Section VI.

Notation: the set of real positive numbers is denoted as
R+; Rn and Rn×m stand for sets of real n-dimensional
vectors and n-row m-column matrices, respectively. Let us
define ei ∈ Rn with all zero elements except the i-th element
that is set as 1. A continuous-time system with the state-
space model ẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t) +
Du(t) is denoted as Σ , (A,B,C,D). Consider the norm
‖x‖2L2[0,T ] ,

∫ T
0
‖x(t)‖22 dt. The space of square-integrable

functions is defined as L2 ,
{
f : R+ → R | ‖f‖L2[0,∞] <

∞
}

and the extended space is defined as L2e ,
{
f :

R+ → R | ‖f‖L2[0,T ] < ∞, ∀ 0 < T < ∞
}

. We
denote IA(x) as an indicator function such that IA(x) = 1
if x ∈ A, otherwise IA(x) = 0. The probability of X
is denoted as P(X). For x ∈ R, dxe represents a value
rounded to the nearest integer greater than or equal to x. Let
G , (V, E , A,Θ) be an undirected weighted digraph with
the set of N vertices V = {v1, v2, ..., vN}, the set of edges
E ⊆ V×V , the weighted adjacency matrix A , [aij ], and the
weighted self-loop matrix Θ. For any (vi, vj) ∈ E , i 6= j,
the element of the weighted matrix aij is positive, and with
(vi, vj) /∈ E or i = j, aij = 0. The degree of vertex
vi is denoted as di =

∑n
j=1 aij and the degree matrix

of the graph G is defined as D = diag
(
d1, d2, . . . , dN

)
,

where diag stands for a diagonal matrix. For each vertex

vi, it has a positive weighted self-loop gain θi > 0. The
weighted self-loop matrix of the graph G is defined as Θ =
diag

(
θ1, θ2, . . . , θN

)
. The Laplacian matrix, representing

the graph G, is defined as L = [`ij ] = D − A + Θ.
Further, G is called an undirected graph if A is symmetric.
An edge of an undirected graph G is denoted by a pair
(vi, vj) ∈ E . An undirected graph is connected if for any
pair of vertices there exists at least one path between two
vertices. The set of all neighbours of vertex vi is denoted as
Ni = {vj ∈ V : (vi, vj) ∈ E}.

II. PROBLEM DESCRIPTION

This section firstly presents the description of a networked
control system. Then, we introduce a malicious adversary
who with limited system knowledge conducts a cyber-attack
to maliciously affect the system performance.

A. Networked control system description

Consider a networked control system associated with a
connected undirected graph G , (V, E , A,Θ) with N ver-
tices, the state-space model of each one-dimensional vertex
vi, i ∈

{
1, 2, . . . , N

}
, is described as

ẋ∆
i (t) =

∑
vj∈Ni

`∆ij
(
x∆
i (t)− x∆

j (t)
)

+ ũi(t), (1)

y∆
τ (t) = x∆

τ (t), (2)

where x∆
i (t), ũi(t) ∈ R are the state of vertex vi and its

control input received from its controller over the wireless
network (see Fig. 1), respectively. The performance of the
networked control system (1) is measured via the state
of a given vertex vτ ∈ V in (2). The weight parame-
ters `∆ij , ∀(vi, vj) ∈ E , are uncertain and assumed to be
structured as `∆ij , ¯̀

ij + δij , where ¯̀
ij and δij are the

nominal value and the bounded probabilistic uncertainty of
`∆ij , respectively.

First, we consider the wireless network healthy, i.e., the
absence of cyber-attacks. Thus, the received control input
ũi(t) of vertex vi, i ∈

{
1, 2, . . . , N

}
, is the same as the

control input sent by its controller:

ũi(t) = ui(t) = −θix∆
i (t), (3)

where ui(t) is the control input designed and sent by the
controller of vertex vi. θi ∈ R+ is an adjustable self-loop
control gain of vertex vi.

For convenience, let us denote x∆(t) ,[
x∆

1 (t), x∆
2 (t), . . . , x∆

N (t)
]>

as the state of the networked
control system. The dynamics of the networked control
system (1) under the control law (3) can be rewritten as

ẋ∆(t) = −L∆x∆(t), (4)

where the uncertain matrix L∆ is defined as: L∆ , L̄+ ∆,
∆ ∈ Ω, where Ω is a closed and bounded set, L̄ , [¯̀ij ]
and ∆ , [δij ] are nominal value and bounded uncertainty
of L∆, respectively. Next, let us make use of the following
assumptions.



Assumption 2.1: We assume that the healthy networked
control system (4) is at its equilibrium before being attacked.

Assumption 2.2: The input of the given performance ver-
tex vτ is protected from any attacks. Further, its state is
unmeasurable.

Then, except for the protected target vertex vτ , a detector
monitors the system by placing a sensor at the output of a
single vertex vm ∈ V \ {vτ}. On the other hand, the system
is attacked by an adversary, whose detailed descriptions are
listed in the following subsection.

B. Adversary description

This part introduces resources and an attack strategy
of the adversary with limited system knowledge, so-called
bounded-rational adversary [10, Def. 2.2].

1) System knowledge: The adversary knows the location
of the protected target vertex vτ , the appearance of a detector,
the set of N vertices V , and the set of edges E . However, the
adversary does not know the exact location of the detector
and has limited knowledge about L∆ in (4). The adversary
only knows L̄ and Ω instead of L∆.

2) Disruption resource: Except for the protected target
vertex vτ , the adversary is able to conduct a cyber-attack on
the input of another vertex. The adversary firstly assumes
the location of a monitor vertex vm selected by the detector.
Then, the adversary selects a vertex va ∈ V \ {vτ} and
injects a malicious attack signal a(t) ∈ R on its input
with the aim of manipulating the output of the protected
target vertex vτ . The control input (3) of vertex vi, i ∈
{1, 2, . . . , N}, received from its controller over the attacked
wireless network can be described as follows

ũi(t) = ui(t) +

{
0, vi 6= va,

a(t), vi = va.
(5)

Thus, the adversary perceives the system model (4) under
the control law (5) with two outputs at the two vertices vτ
and vm as an uncertain dynamical system described by

ẋ∆(t) = −L∆x∆(t) + eaa(t), (6)

y∆
τ (t) = e>τ x

∆(t), (7)

y∆
m(t) = e>mx

∆(t). (8)

3) Adversary strategy: The goal of the adversary is to
maliciously manipulate the output of the protected target
vertex vτ while remaining stealthy with the detector. To
this end, the adversary conducts the stealthy data injection
attack, which is defined as follows. Consider the above
structure of the uncertain continuous-time system (6)-(8)
which is denoted as Σ∆

τ,m , (−L∆, ea, [eτ , em]>, 0), with
target output y∆

τ (t) = e>τ x
∆(t) and monitor output y∆

m(t) =
e>mx

∆(t). The input signal a(t) of the system Σ∆
τ,m is

called the stealthy data injection attack if the monitor output
satisfies

∥∥y∆
m

∥∥2

L2[0,T ]
< σ, in which σ > 0 is called an alarm

threshold. Further, the impact of the stealthy data injection
attack is measured via the energy of the target output over
the horizon [0, T ], i.e.,

∥∥y∆
τ

∥∥2

L2[0,T ]
.

Due to limited system knowledge, the uncertain system
dynamics (6)-(8) are not explicitly available to the adver-
sary. Such an issue causes a difficulty for the adversary in
designing of the attack strategy. To deal with the issue, the
next section adopts a risk metric to evaluate the attack impact
over the probabilistic uncertainty set, which can be evaluated
by the adversary to select an attack vertex.

III. PROBLEM FORMULATION

We consider that both the adversary and the detector have
the same bounded uncertainty about the system knowledge.
Based on this assumption, for a given uncertain parameter
and attack and monitor vertices, the attack impact is charac-
terized via an optimal control problem. Then, we aggregate
the attack impact over the probabilistic uncertainty set by
means of a risk metric. Finally, the problem of optimal
selection of attack and monitor vertices is formulated as a
zero-sum game between two strategic players, the adversary
and the detector, where the game payoff corresponds to the
risk of the attack impact evaluated over the probabilistic
uncertainty.

A. Stealthy data injection attack policy

Due to the presence of uncertainty in the system model
(6)-(8), the attack impact Jτ (va, vm; ∆, a) on the target
vertex vτ by the attack vector a ∈ L2e becomes a function
of the random variable ∆ ∈ Ω

Jτ (va, vm; ∆, a) ,
∥∥y∆
τ

∥∥2

L2
IA(a), (9)

A , {a|
∥∥y∆
m

∥∥2

L2
≤ σ, (6), (8), x(0) = 0},

where y∆
τ (t) and y∆

m(t) are the output of the target vertex vτ
and the output of the monitor vertex vm, respectively. From
(9), the worst-case attack impact on the target vertex vτ with
the random variable ∆ ∈ Ω can be formulated as follows

sup
a∈L2e

Jτ (va, vm; ∆, a). (10)

It is worth noting that (10) is introduced to evaluate the
worst-case attack impact for each pair of va and vm, thus
allowing one to compare the impact for different pairs of
attack and monitor vertices. Further, the worst-case attack
impact (10) is proportional to the alarm threshold σ for
all possible pairs of va and vm. Therefore, without loss
of generality, let us set the alarm threshold σ = 1 in the
remainder of this paper.

Remark 1: Due to the random variable ∆ ∈ Ω, the worst-
case impact (10) becomes a random variable. Thus, in order
to compare the worst-case impacts made by pairs of va and
vm over the uncertainty set Ω, we need to employ a risk
metric which will be introduced in the rest of this subsection.

After investigating the worst-case attack impact (10) on
the target vertex vτ with all the possible pairs of attack va
and monitor vertices vm, the adversary firstly chooses the
attack vertex va such that the corresponding risk (defined
in Definition 3.1) is maximized [10]. Then, the adversary
directly injects the stealthy data injection attack on the input



of the selected attack vertex va. To this end, the adversary
deals with the following optimization problem:

max
va 6=vτ∈V

Jτ (va, vm), (11)

Jτ (va, vm) = R∆∈Ω

[
sup
a∈L2e

Jτ (va, vm; ∆, a)
]
, (12)

where R∆∈Ω is a risk metric evaluated over the probabilistic
uncertainty set. In this paper, we use the well-known Value-
at-Risk [12] as our risk metric, which is defined below.

Definition 3.1: (Value-at-Risk (VaR)): Given a random
variable X and β ∈ (0, 1), the VaR is defined as

VaRβ(X) , inf
{
x|P
[
X ≤ x

]
≥ 1− β

}
.

With a specified level β ∈ (0, 1), VaRβ is the lowest amount
of x such that with probability 1 − β, the random variable
X does not exceed x. /

In order to counter the adversary, the detector adopts
the game-theoretic approach to design its detection strategy,
which will be introduced in the next part.

B. Game-theoretic approach to sensor placement

The detector chooses a vertex vm ∈ V\{vτ} and monitors
its output with the purpose of minimizing the risk (12).
Hence, the detector addresses the following problem.

Problem 1: (Optimal monitor selection) Given a target
vertex vτ and an arbitrary attack vertex va, select a monitor
vertex that minimizes the risk corresponding to the worst-
case attack impact Jτ (va, vm) defined in (12).

The above detector objective is converted into the follow-
ing optimization problem:

min
vm 6=vτ∈V

Jτ (va, vm). (13)

From the scenario of a single-adversary-single-detector we
are considering, the adversary objective (11), and the detector
objective (13), we formulate Problem 1 as a zero-sum game
with the game payoff (12) between two players, i.e., the
adversary and the detector, as follows:

min
vm 6=vτ∈V

max
va 6=vτ∈V

Jτ (va, vm). (14)

The min-max optimization problem (14) admits a saddle-
point equilibrium (v?a, v

?
m) [4] if and only if it satisfies

−∞ < Jτ (va, v
?
m) ≤Jτ (v?a, v

?
m) ≤ Jτ (v?a, vm) <∞,
∀va, vm ∈ V \ {vτ}. (15)

The game payoff of the saddle-point equilibrium Jτ (v?a, v
?
m)

implies that a deviation of the attack vertex ∀va ∈ V \
{vτ , v?a} does not gain the game payoff and a deviation of
the monitor vertex ∀vm ∈ V \ {vτ , v?m} does not decrease
the game payoff.

Remark 2: Since the zero-sum game (14) determined by
discrete decisions of the adversary and the detector might
be solved via linear programming [13, Ch. 5], we need to
evaluate the game payoff defined in (12) for all the possible
pairs of va and vm. However, computing (12) requires us
not only to address the non-convexity of the worst-case

impact (10) but also to devise a computationally efficient
approximation of (12) over a continuous uncertainty set.

The next section will give us an efficient method to ap-
proximately compute the game payoff (12) for each selected
pair of va and vm.

IV. EVALUATING THE GAME PAYOFF

There are two difficulties in solving the zero-sum
game (14). The first difficulty is that: for any given
pair of va, vm, and uncertainty ∆ ∈ Ω, the function
supa∈L2e

Jτ (va, vm; ∆, a) is a non-convex optimization
problem. Secondly, since the set Ω is continuous, the prob-
lem of assessing the game payoff (12) is computationally
intractable. Thus, in this section, we aim to address both
difficulties by invoking the scenario approach [11] that
discretizes the uncertainty set Ω.

A. Worst-case attack impact for a sampled uncertainty point

We begin by considering the case of a sampled uncertainty
realization ∆i ∈ Ω. Let us denote the value of the corre-
sponding uncertain Laplacian matrix in (6) as L∆i and the
uncertain system (6)-(8) as Σ∆i

τ,m ,
(
−L∆i , ea, [eτ , em]>, 0

)
with the attack input at vertex va, the target output at vertex
vτ , and the monitor output at vertex vm. For such an isolated
uncertainty, the worst-case attack impact can be written as

sup
a∈L2e

Jτ (va, vm; ∆i, a) (16)

Following the details in [14, Prop. 1], the optimal control
problem (16) can be equivalently rewritten as the following
convex SDP

γ?i , min
γi∈R+,Pi=P>

i ≥0
γi (17)

s.t. R
(
Σ∆i
τ,m, Pi, γi

)
≤ 0,

where

R
(
Σ∆i
τ,m, Pi, γi

)
,

[
−L∆iPi − PiL∆i Piea

e>a Pi 0

]
−
[
γieme

>
m + eτe

>
τ 0

0 0

]
.

Next, we tackle the game payoff evaluation over a con-
tinuous set of uncertainties Ω by first approximating the
continuous uncertainty set Ω with a discrete set ΩM1

of
sampled uncertainty realizations, with cardinality M1, and
then using the point-wise evaluation of the worst-case attack
impact described in (17).

B. Approximate game payoff function

The game payoff (12) is difficult to determine since the
risk metric operates over a continuous set Ω. To this end,
we adopt the scenario approach [11] to approximate the
continuous uncertainty set Ω, and consequently determine
the approximate game payoff (12). Before this, we rewrite
(12) for a given β ∈ (0, 1) as (18).

Jτ (va, vm) = inf γ (18)
s.t. PΩ[X ≤ γ] ≥ 1− β



where X = supa∈L2e
Jτ (va, vm; ∆, a), ∆ ∈ Ω, and the

subscript to the probability operator denotes that it operates
over the set Ω. Next, we apply the scenario approach to
determine the approximate value of the optimization problem
(18) in the following theorem.

Theorem 4.1: Let ε1 ∈ (0, 1) represent the accuracy with
which the probability operator PΩ in (18) is approximated.
Let β1 ∈ (0, 1) represent the confidence with which the
accuracy ε1 is guaranteed, i.e.,

P{|PΩ(X ≤ γ)− P̂M1
| ≥ ε1} ≤ β1.

Here P̂M1 represents the approximation of the probability
operator PΩ in (18) defined as

P̂M1 ,
1

M1

M1∑
i=1

I (X ≤ γ) , where M1 ≥
1

2ε21
log

2

β1
. (19)

Then, the VaRβ defined in (12) can be obtained with an
accuracy ε1 and confidence β1 by solving

γ̂ =


min γ

s.t.
1

M1

M1∑
i=1

I (γ?i ≤ γ) ≥ 1− β1

 , (20)

where γ̂ represents the VaRβ with an accuracy ε1. The value
of γ?i , i ∈ {1, 2, . . . ,M1}, is obtained by solving (17). /

Proof: The proof follows directly from our previous
results in [10, Th. 4.4].

Remark 3: Solving (20) with the risk metric defined in
Definition 3.1 gives us a measure of risk for a corresponding
pair of va and vm that has been evaluated over the explicit
probabilistic uncertainty set Ω. This risk measure is different
from the worst-case impact (10), which is a function of a
random variable ∆ ∈ Ω.
Theorem 4.1 provides a method to compute the approximate
value of game payoff (12) which was difficult to compute
previously. In order to evaluate the result of Theorem 4.1,
the next subsection will address the feasibility of the opti-
mization problem (20).

C. Feasibility analysis

For M1 sampled uncertainty ∆i ∈ ΩM1 , the following
lemma gives us the necessary and sufficient condition to
ensure that the problem (20) is feasible and therefore admits
a finite upper bound.

Lemma 4.2 (Boundedness): Consider M1 i.i.d. realiza-
tions of uncertainty ∆i ∈ ΩM1

. The optimal solution of
(20) with these M1 realizations of uncertainty is bounded
if and only if the optimal value of (17) is bounded for at
least dM1(1− β1)e system realizations. /

Proof: The proof follows directly from our previous
results in [10, Lem. 4.5].

Then, we investigate the feasibility of the optimization
problem (17) for a system realization corresponding to a
given sampled uncertainty ∆i ∈ ΩM1

. Let us denote the
following systems Σ∆i

τ , (−L∆i , ea, e
>
τ , 0) and Σ∆i

m ,
(−L∆i , ea, e

>
m, 0). Inspired by [15, Th. 2], the feasibility of

the optimization problem (17) is related to the invariant zeros
of Σ∆i

τ and Σ∆i
m , which are defined as follows.

Definition 4.1: (Invariant zeros) Consider the strictly
proper system Σ , (A,B,C, 0) with A,B, and C are real
matrices with appropriate dimensions. A tuple (λ, x̄, g) ∈
C× CN × C is a zero dynamics of Σ if it satisfies[

λI −A −B
C 0

] [
x̄
g

]
=

[
0
0

]
, x̄ 6= 0.

In this case, a finite λ is called a finite invariant zero of Σ.
Further, the strictly proper system Σ always has at least one
invariant zero at infinity [16, Ch. 3]. /

More specifically, let us state the following lemma.
Lemma 4.3: [15, Th. 2] Consider the two following con-

tinuous time systems Σ∆i
τ , (−L∆i , ea, e

>
τ , 0) and Σ∆i

m ,
(−L∆i , ea, e

>
m, 0). The optimization problem (17) is feasible

if and only if the unstable invariant zeros of Σ∆i
m are also

invariant zeros of Σ∆i
τ . /

Inspired by Lemma 4.3, we will investigate both finite and
infinite invariant zeros of the two systems Σ∆i

m and Σ∆i
τ .

Finite invariant zeros: Let us state the following lemma
that considers the finite invariant zeros of Σ∆i

m .
Lemma 4.4: Consider a networked control system associ-

ated with a connected undirected graph G , (V, E , A,Θ),
whose closed-loop dynamics is described in (6)-(8) for a
given sampled uncertainty ∆i ∈ ΩM1

. Suppose that the
networked control system is driven by the stealthy data
injection attack at a single attack vertex va, and observed by
a single monitor vertex vm, resulting in the state-space model
Σ∆i
m , (−L∆i , ea, e

>
m, 0). Then, there exist self-loop control

gains θi, i ∈ {1, 2, . . . , N}, in (3) such that the networked
control system Σ∆i

m has no finite unstable invariant zero. /
Proof: We postpone the proof to Appendix A.

The constructive proof of Lemma 4.4 (see Appendix A)
gives us a design procedure to ensure that the system Σ∆i

m

has no finite unstable zero.
Infinite invariant zeros: We now investigate the infinite

invariant zeros of the systems Σ∆i
m and Σ∆i

τ . In the inves-
tigation, we make use of known results connecting infinite
invariant zeros mentioned in Definition 4.1 and the relative
degree of a linear system, which is defined below.

Definition 4.2: (Relative degree) [17, Ch. 13] Consider
the strictly proper system Σ , (A,B,C, 0) with A ∈ Rn×n,
B, and C are real matrices with appropriate dimensions. The
system Σ is said to have relative degree r (1 ≤ r ≤ n) if
the following conditions satisfy

CAkB = 0, 0 ≤ k < r − 1,

CAr−1B 6= 0.
Based on Definition 4.2, let us denote rτa and rma as

the relative degrees of Σ∆i
τ and Σ∆i

m , respectively. In the
scope of this study, we have assumed that the cyber-attack
(5) has no direct impact on the outputs (7) and (8), resulting
in strictly proper systems Σ∆i

τ and Σ∆i
m , ∀∆i ∈ ΩM1

. This
implies that the relative degrees rτa and rma of Σ∆i

τ and
Σ∆i
m are positive, yielding their infinite zeros. By following

our existing result related to those infinite zeros [9, Th. 7]



the infinite zeros of Σ∆i
m are also the infinite zeros of Σ∆i

τ

if and only if the following condition holds

rma ≤ rτa. (21)

Boundedness of solutions: After analyzing both finite
and infinite zeros of the two systems Σ∆i

m and Σ∆i
τ , the

following theorem gives us a sufficient condition to ensure
the feasibility of the optimization problem (17), and thus of
the existence of a finite upper bound on the corresponding
optimal value.

Theorem 4.5: Consider the strictly proper systems Σ∆i
τ ,

(−L∆i , ea, e
>
τ , 0) and Σ∆i

m , (−L∆i , ea, e
>
m, 0), in which

the two systems have the same stealthy data injection attack
input at a single attack vertex va but different output vertices,
i.e., vτ for Σ∆i

τ and vm for Σ∆i
m . Suppose the systems Σ∆i

τ

and Σ∆i
m have relative degrees rτa and rma, respectively.

Then, the problem (17) admits a finite solution if
1) the self-loop control gains θi, i ∈ {1, 2, . . . , N}, in

(3) are chosen such that the system Σ∆i
m has no finite

unstable zeros; and
2) the condition (21) holds. /

Proof: The proof is postponed to Appendix B.
The sufficient condition (21) will be verified by computing

the approximate game payoffs (20) in Theorem 4.1 and the
equilibrium of the zero-sum game (14) will be analyzed via
a numerical example in the next section.

V. NUMERICAL EXAMPLES

To validate the obtained results, through a numerical
example, this section i) applies (20) with two different values
of β to the example with the aim of verifying (21); ii)
examines the saddle-point equilibrium of the zero-sum game
(14) with the two different values of β; iii) computes the
mixed-strategy Nash equilibrium of the zero-sum game in
case there is no saddle-point equilibrium. Let us take an
example of a 10-vertex networked control system depicted
in Fig. 2. The simulation parameters are chosen as follows:

L∆ , [`∆ij ] = [¯̀ij ] + [δij ] + Θ,

¯̀
ij = −10, δij ∈ [−0.5, 0.5], ∀(vi, vj) ∈ E , i 6= j,

¯̀
ij = δij = 0, ∀(vi, vj) /∈ E ,

`∆ii = −
∑
vj∈Ni

(
¯̀
ij + δij

)
, θ0 = 0.5.

A. Computing the approximate game payoff

To compute (20), let us choose ε1 = 0.06, β1 = 0.08, and
M1 = 450, which satisfy (19). For any sampled uncertainty
∆i ∈ ΩM1

, the chosen uniform offset self-loop control gain
θ0 (see Appendix A) ensures that Σ∆i

m has no finite unstable
zero, which validates Lemma 4.4. We will present two cases
by selecting two values of the specified level β in (18), i.e.,
βa = 0.08 and βb = 0.15. Suppose that v5 is the protected
target vertex (see Assumption 2.2 and Fig. 2). There are
two possible monitor vertices v2 and v6, which satisfy the
necessary and sufficient condition (21) for any va ∈ V \{v5}
(see Fig. 2). For more clarity, we compute the approximate
game payoff (20) w.r.t. the target vertex v5 for each pair of

va ∈ V \ {v5} and vm ∈ {v2, v6} in the cases β = βa and
β = βb, which gives us

J5(va, vm=2;βa) ≤ 1.5848, J5(va, vm=6;βa) ≤ 1.5055,

J5(va, vm=2;βb) ≤ 1.5550, J5(va, vm=6;βb) ≤ 1.4803.

Otherwise, there exits at least an attack vertex va ∈ V \{v5}
pairing with an arbitrary monitor vm ∈ V \ {v2, v5, v6} to
yield infinite game payoffs, e.g., J5(va=3, vm=1;βa) = ∞,
J5(va=3, vm=1;βb) = ∞, J5(va=10, vm=3;βa) = ∞, and
J5(va=10, vm=3;βb) =∞. In order to explain those infinite
values, we verify the condition (21) by checking the relative
degrees among those vertices via Fig. 2, i.e., ra=3,m=5 =
2 < ra=3,m=1 = 3 and ra=10,m=5 = 2 < ra=10,m=3 = 3,
which violate the necessary and sufficient condition (21).

B. Examining the saddle-point equilibrium

Next, we will investigate the equilibrium of the zero-sum
game in the cases β = βa and β = βb. Fig. 3 illustrates
the game payoffs for va ∈ {v1, v10} and vm ∈ {v2, v6}
corresponding to ∆i ∈ ΩM1

. In both cases β = βa and
β = βb, since those game payoffs dominate the values of the
other choices of va ∈ V \ {v1, v5, v10} and vm ∈ {v2, v6},
we only show four marked-lines in Fig. 3.

In the first case β = βa = 0.08: the crossing points of the
green dotted-line and marked-lines are the approximate game
payoffs with β = βa for the corresponding pairs of attack
and monitor vertices (see Box A in Fig. 3). By observing
those approximate game payoffs in Fig. 3, one has

J5(∀va ∈ V \ {v5, v10}, vm=6;βa)

< J5(va=10, vm=6;βa) < J5(va=10, vm=2;βa). (22)

According to the definition of the saddle-point equilibrium
in (15), the inequalities (22) imply that the example admits a
saddle-point equilibrium (v?a = v10, v

?
m = v6) with β = βa.

In the second case β = βb = 0.15: the approximate
game payoffs are the crossing points of the marked-lines
and the blue dashed-line (see Box B in Fig. 3). Those
crossing points give us

J5(va=1, vm=2;βb) = 1.4603,

J5(va=10, vm=6;βb) = 1.4803,

J5(va=1, vm=6;βb) = 1.4856,

J5(va=10, vm=2;βb) = 1.5550. (23)

From (23), we will examine whether a saddle-point equi-
librium exists. If the detector monitors vm=2, the adversary
simply attacks va=10 to maximize the risk. But, in the case of
va=10, the detector can move to vm=6 to reduce the risk since
J5(va=10, vm=6;βb) < J5(va=10, vm=2;βb). Then, the ad-
versary can obtain a higher risk by attacking va=1 instead
of va=10, i.e., J5(va=1, vm=6;βb) > J5(va=10, vm=6;βb).
Monitoring vm=2 yields a lower risk for the detector, i.e.,
J5(va=1, vm=2;βb) < J5(va=1, vm=6;βb). The story comes
back to the beginning since the adversary simply attacks
va=10 to maximize the risk. The above observation implies



Fig. 2. 10-vertex networked control system with target vertex v5.

Fig. 3. Approximate game payoff (20) with β = βa = 0.08 and β =
βb = 0.15 in case the detector selects vm=2 or vm=6 and the adversary
attacks va=1 or va=10. The other game payoffs yielded by the other choices
of va and vm are removed due to the ineffectiveness.

that the example with β = βb does not admit a saddle-
point equilibrium defined in (15). However, the game always
admits a mixed-strategy Nash equilibrium [4], which will be
computed in the next subsection.

C. Computing mixed-strategy Nash equilibrium

We compute the mixed-strategy Nash equilibrium for the
example with the cases β = βa and β = βb. Let us
denote P(va;β) and P(vm;β), β ∈ {βa = 0.08, βb =
0.15} as the probabilities for attack va and monitor vertices
vm, respectively. For convenience, we denote P̄(va;β) =

[P(va=1;β), . . . ,P(va=10;β)]
>
, (va 6= v5) and

P̄(vm;β) = [P(vm=1;β), . . . ,P(vm=10;β)]
>
, (vm 6= v5).

The expected game payoff of the example w.r.t. the target
vertex v5 for attack vertex va and monitor vertex vm is

Q5(va, vm;β) = P̄(va;β)>J̄5P̄(vm;β),

where J̄5 =
[
J5(vi, vj ;β)ij

]
is a 9× 9-game matrix, whose

ij-entry is filled by J5(va=i, vm=j ;β). Similarly to (15),
there exits a saddle point (v?a, v

?
m) if it satisfies

Q5(va, v
?
m;β) ≤Q5(v?a, v

?
m;β) ≤ Q5(v?a, vm;β),

∀va, vm ∈ V \ {vτ}. (24)

The saddle point (v?a, v
?
m) in (24) indicates that a deviation

of selecting va(vm) does not increase(decrease) the optimal
expected game payoff Q5(v?a, v

?
m;β). Further, since the

possible choices of the detector are restricted to {v2, v6},
we simply obtain P(∀vm ∈ V \ {v2, v5, v6};β) = 0. More
specifically, by using linear programming [13, Ch. 5] to
compute (24), we receive the following optimal solution

In the first case β = βa = 0.08:

P?(vm=6;βa) = 100%, P?(vm=2;βa) = 0%,

P?(va=10;βa) = 100%, P?(∀va ∈ V \ {5, 10};βa) = 0%.

The above optimal solution once again confirms that a pair
(v?a = v10, v

?
m = v6) is the pure saddle-point equilibrium

(15) of the example with β = βa, which was also verified
in (22).

In the second case β = βb = 0.15: we obtain the
following optimal solution

P?(vm=6;βb) ≈ 94.72%, P?(vm=2;βb) ≈ 5.28%,

P?(va=10;βb) ≈ 25.29%, P?(va=1;βb) ≈ 74.71%,

P?(∀va ∈ V \ {1, 5, 10};βb) = 0%.

The above optimal solution clearly show that the example
does not admit a pure saddle-point equilibrium (15) with
β = βb, which was discussed at the end of the previous
subsection.

VI. CONCLUSION

In this paper, we studied a continuous-time networked
control system attacked by an adversary with uncertain
system knowledge. The purpose of the adversary was to
manipulate the output of a protected target vertex by directly
conducting the stealthy data injection attack on another
vertex. Meanwhile, an optimal sensor placement problem
was formulated such that a detector with the same uncertain
system knowledge places a sensor at a vertex in order to
unmask the adversary. We developed a risk-based game-
theoretic framework to describe the interactions between
the two players, the adversary and the detector, in the
presence on probabilistic parameter uncertainty. In particular,
we formulate the optimal decisions as a zero-sum game,
where the game payoff is taken as a risk metric evaluated
over the probabilistic uncertainty set. Due to the continuous
nature of the uncertainty set, the zero-sum game could not



be solved directly. Thus, we employed the scenario approach
to approximately compute the game payoff over a number
of samples of uncertain parameters. After approximately
evaluating the game payoff for each pair of monitor and
attack vertices, the mixed-strategy Nash equilibrium of the
zero-sum game was also computed by linear programming.
In future works, our game will be expanded to consider
multiple attack and monitor vertices. Characterizing an ana-
lytical solution to the equilibrium of the game between the
adversary and the detector would also be a promising topic.

APPENDIX

A. Proof of Lemma 4.4

Let us denote a tuple (λ∆i
m , x̄∆i

m , g∆i
m ) ∈ C×CN ×C as a

zero dynamics of Σ∆i
m , where a finite λ∆i

m is called a finite
invariant zero of Σ∆i

m . From Definition 4.1, one has that the
tuple (λ∆i

m , x̄∆i
m , g∆i

m ) satisfies[
λ∆i
m I + L∆i −ea

e>m 0

] [
x̄∆i
m

g∆i
m

]
=

[
0
0

]
.

The above equation is rewritten as[
(λ∆i
m − θ0)I + L∆i + θ0I −ea

e>m 0

] [
x̄∆i
m

gm

]
=

[
0
0

]
,

(25)

where θ0 ∈ R+ is a uniform offset self-loop control gain.
From (25), the finite value (λ∆i

m −θ0) ∈ C is an invariant zero
of a new state-space model Σ∆i

0m , (−L∆i − θ0I, ea, e
>
m, 0).

For all λ∆i
m ∈ C satisfies (25), the control gain θ0 can be

adjusted such that θ0 > Re(λ∆i
m ), resulting in that Σ∆i

0m

has no finite unstable zero. Then, the self-loop control gains
θi, i ∈ {1, 2, . . . , N}, in (3) are tuned with θ0 such that the
system Σ∆i

m is identical with Σ∆i
0m. By this tuning procedure,

the system Σ∆i
m also has no finite unstable invariant zero. �

B. Proof of Theorem 4.5

Based on Lemma 4.3, the optimization problem (17) is
feasible if and only if Σ∆i

m has unstable invariant zeros that
are also invariant zeros of Σ∆i

τ . By applying the control
design procedure in the proof of Lemma 4.4 (see Appendix
A), we ensure that Σ∆i

m has no finite unstable invariant zeros,
which leaves us to analyze infinite zeros of those systems.
Recall the equivalence between the relative degree of a SISO
system and the degree of its infinite zero. Hence, a necessary
condition to guarantee the feasibility of the optimization

(17) is that the number of infinite invariant zeros of Σ∆i
m

is not greater than that of Σ∆i
τ . This implies rma ≤ rτa.

For sufficiency, it remains to show that if rma ≤ rτa, any
infinite zeros of Σ∆i

m are also infinite zeros of Σ∆i
τ . The proof

directly follows our previous results [9, Th. 7]. �
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