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Abstract—Understanding smart grid cyber attacks is key
for developing appropriate protection and recovery measures.
Advanced attacks pursue maximized impact at minimized costs
and detectability. This paper conducts risk analysis of combined
data integrity and availability attacks against the power system
state estimation. We compare the combined attacks with pure
integrity attacks - false data injection (FDI) attacks. A security
index for vulnerability assessment to these two kinds of attacks is
proposed and formulated as a mixed integer linear programming
problem. We show that such combined attacks can succeed with
fewer resources than FDI attacks. The combined attacks with
limited knowledge of the system model also expose advantages
in keeping stealth against the bad data detection. Finally, the
risk of combined attacks to reliable system operation is evaluated
using the results from vulnerability assessment and attack impact
analysis. The findings in this paper are validated and supported
by a detailed case study.

Index Terms—Combined integrity and availability attack, false
data injection, risk analysis, power system state estimation

I. Introduction

THE increasingly digitized power system offers more data,
details, and controls in a real-time fashion than its non-

networked predecessors. One of the benefiting applications
of this development is State Estimation (SE): Remote Termi-
nal Units (RTUs) provide measurement data via Information
and Communication Technology (ICT) infrastructure such as
Supervisory Control and Data Acquisition (SCADA) system.
The SE provides the operator with an estimate of the state
of the electric power system. This state information is then
used and processed by the energy management system (EMS)
for optimal power flow (OPF), contingency analysis (CA),
and automatic generation control (AGC). Security of supply
depends on the EMS, which in turn depends on a reliable SE.

As discussed in [1], the SCADA system is vulnerable
to a large number of security threats. A class of integrity
data attack, known as false data injection (FDI) attack, has
been studied with considerable attention. With modifying the
measurement data, this attack can pass the Bad Data Detection
(BDD) within SE to keep stealth [2], by tampering of RTUs,
the communication links to the control center, or even the
databases and IT software in the control center. However,
such FDI attack needs intensive attack resources such as the
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knowledge of the system model and the capability to corrupt
the integrity on a set of measurements. Denial-of-service
(DoS) attacks [3] [4], a type of availability attack, are much
“cheaper” to achieve, especially if RTUs communicate via
insecure communication channels. In this paper, we focus on
combined attacks where the SE is corrupted by both integrity
attacks and availability attacks simultaneously. We compare
combined attacks and FDI attacks under different levels of
adversarial knowledge and resources.

A. State of the Art

Research in the literature has focused on FDI attacks
from many aspects of risk assessment [5], e.g., vulnerability
analysis, attack impact assessment and mitigation schemes
development. As first shown in [2], a class of FDI attack,
so-called stealth attack, can perturb the state estimate without
triggering alarms in BDD within SE. Vulnerability of SE to
stealth FDI attacks is usually quantified by computing attack
resources needed by the attacker to alter specific measurements
and keep stealth against the BDD [6]–[8].

Since state estimates are inputs of many application specific
tools in EMS, the corrupted estimates can infect further control
actions. The estimate errors due to FDI attacks were analyzed
in [9] and [10]. The results illustrate that the errors could be
significant even with a small number of measurements being
compromised. The work in [11] and [12] studied the potential
economic impact of FDI attacks against SE by observing the
nodal price of market operation. The attacker could obtain
economic gain or cause operating costs in the market. Recent
work in [13] studied the physical impact of FDI attacks with
the attacker’s goal to cause a line overflow.

In order to defend against stealth FDI attacks, mitigation
schemes have been proposed to improve the bad data detection
algorithm or safeguard certain measurements from adversarial
data injection. Sequential detection (or quickest detection)
of FDI attacks was designed mainly based on well-known
Cumulative Sum (CUSUM) algorithm in [14]. In reference
[15], detection methods that leverage synchrophasor data and
other forecast information were presented. The network layer
and application layer mitigation schemes, such as multi-path
routing and data authentication and protection, are proved to
be effective to decrease the vulnerability [16] [17].

Most of the research above assumes that the adversary has
full knowledge of the system model including the power grid
topology and transmission line parameters. However, the data
of the system model is usually protected well and the attacks
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are always executed with limited adversarial knowledge. The
work in [18], [19] proposed that an FDI attack can be
made with incomplete network information. The attacker can
still keep stealth if it knows the local information (topology
and line parameters) of the attacking region under certain
conditions. The authors also explored how to launch a suc-
cessful FDI attack against AC state estimation with incomplete
knowledge [20]. Another limited knowledge scenario is that
the attacker has inaccurate network information of topology
and line parameters [21]. Such FDI attacks have the possibility
to be detected by the BDD while the detectability is intimately
related to the detectability of topology or parameter errors
[22]. For these limited knowledge cases, the adversary could
also infer necessary network information based on available
data using learning methods such as independent component
analysis (ICA) [23] and subspace estimation technique [24].

It is worth noting that the majority of research has focused
on stealth FDI attacks from a specific aspect of vulnerability
or impact assessment. The work in [4] first considered adding
a class of availability attacks, so-called jamming attack, to the
attack scenarios against SE. Our recent paper [17] first stud-
ied the stealth combined attacks with different measurement
routing topologies, concluding that such attacks may need less
attack resources than FDI attacks. Besides, the work above still
assumed that the attackers have perfect knowledge of the sys-
tem model. In practice, we are more interested in the limited
adversarial knowledge case that the attacker knows inaccurate
network information. Such attacks are not guaranteed to be
stealth. In this work we would like to explore how combined
attack can differ from FDI attacks in a limited knowledge
setting. Intuitively, combined attacks provide the availability
attack option to block measurements that the attacker has least
knowledge of. This motivates the use of attack resources and
the detection probability attacks with limited knowledge in
vulnerability analysis. In addition, vulnerability and impact
of attacks can be combined together in the notion of risk.
In [25], a high-level risk assessment methodology for power
system applications including SE was presented. However,
risk analysis methods and tools combining vulnerability and
impact assessment for data attacks are needed to implement
risk assessment methodologies.

In this paper, in contrast to our previous work [17], for the
first time we formulate combined attacks with limited knowl-
edge of the system model and we conduct the risk analysis of
combined attacks. In order to assess the risk, we first analyze
vulnerability of SE with respect to attack resources needed
by the adversary and calculate the detection probability of
combined attacks. This is a necessary step in deriving the
likelihood of the attack. Next, we propose attack impact metric
for evaluating attack impact on load estimate. Combining the
results from vulnerability and impact assessment, we present
the risk which combined attacks bring to reliable system
operation. We compare the vulnerability, impact and risk
with those of FDI attacks. The simulation results show that
combined attacks yield higher risk in majority of considered
cases.

B. Contributions and Outline

As far as we know, our work is the first one to conduct
risk analysis of combined attacks with limited adversarial
knowledge. Our contributions are listed as follows:

1) The first part of vulnerability analysis is presented
through the notion of security index [7], which corre-
sponds to the minimum attack resources needed by the
attacker to compromise the measurements while keeping
stealth. The power system is more vulnerable to attacks
with smaller security index since such attacks can be
executed with less resources. We show that, the optimal
solution of combined attack security index problem coin-
cides with the optimal solution of the FDI attack security
index problem.

2) Our second contribution is to address the detection
probability problem of combined attacks with limited
adversarial knowledge. Here we relax the full knowledge
assumption which is commonly used in the literature.
We show that the optimal combined attack with limited
adversarial knowledge can still keep stealth under cer-
tain conditions. The empirical results also indicate that
combined attacks have lower detection probability.

3) We propose risk metric to quantify the risk of combined
attacks with limited adversarial knowledge. For the at-
tacks with the same security index, the risk metric is
computed by multiplying 1) the probability of the attack
not to be detected, with 2) the attack impact on load
estimate. We particularly consider the attack impact on
load estimate because the load estimates are inputs of
other applications that compute optimal control actions in
EMS. Based on the analysis of risk metrics of combined
attacks and FDI attacks, we show that power system
operations face higher risk under combined attacks.

The outline of the paper is as follows. Section II gives
an introduction of SE and stealth FDI attacks mechanism.
Section III extends the attack scenario to combined attacks
and proposes security index with computational method for
vulnerability analysis. In Section IV, the detectability of com-
bined attacks with limited adversarial knowledge is discussed.
The risk metric is proposed to measure the risk of attacks in
Section V with the analysis of the vulnerability and attack
impact. Section VI presents empirical results from a power
system use case. In section VII we conclude the paper.

C. Notation

For an m× n matrix H ∈ Rm×n, we denote the i-th row of
H by H(i, :). For a vector of m values a ∈ Rm, a(i) is the i-th
entry of a. By diag(a), we denote an m×m diagonal matrix
with the elements of vector a on the main diagonal.

II. Power SystemModel and Data Attacks

In this section, we review the state estimation and BDD
techniques and the stealth data attacks problem.
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A. State Estimation

The power system we consider has n + 1 buses and nt
transmission lines. The data collected by RTUs includes line
power flow and bus power injection measurements. These m
measurements are denoted by z = [z1, . . . ,zm]T . The system
state x is the vector of phase angles and voltage magnitudes
at all buses except the reference bus whose phase angle is
set to be zero. For the analysis of cyber security and bad data
detection in SE, it is customary to describe the dependencies of
measurements and system state through an approximate model
called DC power flow model [8]. In the DC power flow model,
all the voltage magnitudes are assumed to be constant and
the reactive power is completely neglected. Thus the vector
z refers to active power flow and injection measurements,
and the state x refers to bus phase angles only. There are n
phase angles to be estimated excluding the reference one, i.e.
x = [x1, . . . , xn]T . Hence, z and x are related by the equation

z = P

 WBT

−WBT

B0WBT

x + e := Hx + e, (1)

where e∼N(0,R) is the measurement noise vector of indepen-
dent zero-mean Gaussian variables with the covariance matrix
R = diag(σ2

1, . . . ,σ
2
m), H ∈ Rm×n represents the system model,

depending on the topology of the power network, the line
parameters and the placement of RTUs. Here the topology
is described by a directed incidence matrix B0 ∈ R

(n+1)×nt in
which the directions of the lines can be arbitrarily specified
[8]. Matrix B ∈Rn×nt is the truncated incidence matrix with the
row in B0 corresponding to the reference bus removed. The
line parameters are described by a diagonal matrix W ∈ Rnt×nt

with diagonal entries being the reciprocals of transmission line
reactance. Matrix P ∈ Rm×(2nt+n+1) is a matrix stacked by the
rows of identity matrices, indicating which power flows or bus
injections are measured. Usually a large degree of redundancy
of measurements is employed to make H full rank.

The state estimate x̂ is obtained by the following weighted
least squares (WLS) estimate:

x̂ := argmin
x

(z−Hx)T R−1(z−Hx), (2)

which can be solved as x̂ = (HT R−1H)−1HT R−1z := Kz.
The estimated state x̂ can be used to estimate the active

power flows and injections by

ẑ = Hx̂ = HKz := Tz, (3)

where T is the so-called hat matrix [26]. The BDD scheme
uses such estimated measurements to identify bad data by
comparing ẑ with z, see below.

B. Bad Data Detection

Measurement data may be corrupted by random errors. Thus
there is a built-in BDD scheme in EMS for bad data detection.
The BDD is achieved by hypothesis tests using the statistical
properties of the measurement residual:

r = z− ẑ = (I−T)z := Sz = Se, (4)

where r ∈ Rm is the residual vector, I ∈ Rm×m is an identity
matrix and S is the so-called residual sensitivity matrix [26].

We now introduce the J(x̂)-test based BDD. For the mea-
surement error e ∼ N(0,R), the new random variable y =
m∑
i

R−1
ii e2

i where Rii is the diagonal entry of the covariance ma-

trix R has a χ2 distribution with m−n degrees of freedom. Note
the quadratic cost function J(x̂) = ‖R−1/2r‖22 = ‖R−1/2Se‖22. For
the independent m measurements we have rank(S) = m− n,
which implies that J(x̂) has a so-called generalized chi-squared
distribution with m−n degrees of freedom [27]. The BDD uses
the quadratic function as an approximation of y and checks
if it follows the distribution χ2

m−n. Defining α ∈ [0,1] as the
significance level corresponding to the false alarm rate, and
τ(α) such that ∫ τ(α)

0
f (x)dx = 1−α, (5)

where f (x) is the probability distribution function (PDF) of
χ2

m−n. Hence, the BDD scheme becomes{
Good data, if ‖R−1/2r‖2 ≤

√
τ(α),

Bad data, if ‖R−1/2r‖2 >
√
τ(α),

(6)

C. Stealth FDI Attacks

The goal of an attacker is to perturb the SE while re-
maining hidden from the BDD. If only data integrity attacks
are considered, the attacker could inject false data on a set
of measurements, modifying the measurement vector z into
za := z+a. Here the FDI attack vector a ∈Rm is the corruption
added to the original measurement z. We have the following
definition of a ka-tuple FDI attack,

Definition 1 (ka-tuple FDI attack). An attack with an FDI
attack vector a ∈Rm is called a ka-tuple FDI attack if a number
of ka measurements are injected with false data, i.e. ‖a‖0 = ka.

As shown in [2], an attacker with full knowledge of the
system model (i.e., the matrix H) and the capability to corrupt
specific measurements can keep steath if the FDI attack vector
follows a = Hc where c ∈ Rn is non-zero. The corrupted
measurements za becomes za = H(x + c) + e. This leads to the
state estimate perturbed by a degree of c, while the residual for
BDD checking remains the same. It has been verified that such
stealth FDI attacks based on the DC model can be performed
on a real SCADA/EMS testbed avoiding the bad data detection
with full nonlinear AC power flow model [9].

To describe the vulnerability of SE to stealth FDI attacks
with full knowledge of the system model, the security index
is introduced as the minimum number of measurements that
need to be corrupted by the attacker in order to keep stealth
[7]. The security index is given by

α j := min
c

‖a‖0

s.t. a = Hc, a( j) = µ, (7)
a(l) = 0 for all l ∈ Γ,

where a( j) denotes the injected false data on measurement
j, and µ is the non-zero attack magnitude determined by the
attacker. We add the constraint that the pseudo-measurements
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(in the set Γ) corresponding to zero-injection buses cannot be
attacked. The result α j is the security index that quantifies the
vulnerability of measurement j to stealth FDI attacks. Here
the computed α j belongs to one of the FDI attacks with the
minimum ka (ka = α j) for measurement j. It is known that
this optimization problem above is NP-hard (See [28]). In [8],
the authors proposed an approach using the big M method to
directly express (7) as a mixed integer linear programming
(MILP) problem which can be solved with an appropriate
solver,

α j := min
c,y

m∑
i=1

y(i)

s.t. Hc ≤ My, (8a)
−Hc ≤ My, (8b)
H( j, :)c = µ, (8c)
H(l, :)c = 0, for all l ∈ Γ, (8d)
y(i) ∈ {0,1} for all i.

In (8), M is a constant scalar that is greater than the
maximum absolute value of entries in Hc∗, for some optimal
solution c∗ of (7). At optimality, for any i that |H(i, :)c∗|= 0, the
corresponding y(i) is zero. Thus an optimal solution to (8) is
exactly the same optimal solution to (7) with y(i) = 1 indicating
that the measurement i is corrupted by an FDI attack. Here
the attack magnitude µ is determined by the attacker and is
set as a tunable parameter in the optimization problem (8).
Thus, the attacker can vary the attack magnitude based on the
possible constraints arising from the presence of measurement
forecasts and range limitations. We denote the optimization
problem (8) which computes the FDI attacks as Pa(H) where
H corresponds to the full system model.

III. Stealth Combined Data Attacks
FDI attacks are resource-intensive since the adversary needs

to coordinate integrity attacks on all targeted measurements.
This usually gives the adversary more power than possible
in practice [10]. In reality, an attacker would try to reduce
the attack resources and would prefer data availability attacks
(e.g., DoS attacks, jamming attacks) since monitoring systems
are always more vulnerable to this type of attacks [29]. Thus,
we focus on the scenario that the adversary would launch the
combined data integrity and availability attacks.

A. Combined Data Integrity and Availability Attacks

For a large-scale SCADA system, missing data and failing
RTUs are common [7]. When some of the measurements are
missing, the typical solution widely employed in SE is to use
the remaining data before the system becomes “unobservable”.
Another solution is to use pseudo measurements (e.g., previous
data, forecast information), but these measurements would still
lose confidence in further time intervals as long as the avail-
ability attacks continue. The combined attacks we introduce
here are attacks which will not make the system unobservable
or lead to non-convergence of the SE algorithm. We say that
such combined attacks can still keep stealth against the BDD,
with the following definition.

Definition 2 (stealth combined attacks). Attacks which can
launch both availability attack and FDI attack are called
stealth combined attacks if no additional alerts are triggered
in the current BDD.

In practice, the current BDD scheme employed in SE would
not trigger alarms when some measurements are missing.
Besides, even when availability attacks happen, they may be
misdiagnosed as poor network conditions or physical damages
to the sensors. Thus we keep the assumption in this paper that
SE uses remaining data if availability attacks take place and
availability attack would not trigger additional alerts in BDD.
We introduce the availability attack vector d ∈ {0,1}m for the
availability attacks and d(i) = 1 means that measurement i is
unavailable. Thus the model for remaining measurements and
system state can be described by

zd = Hd x + ed, (9)

where ed ∈ R
m and zd ∈ R

m are the noise vector and mea-
surement vector respectively, and the entries of them are zero
if the corresponding measurements are unavailable. Matrix
Hd ∈ R

m×n denotes the model of the remaining measurements
and it is obtained from H by replacing some rows with zero
row vectors due to availability attacks on these measurements,
i.e. Hd := (I−diag(d))H. We can further obtain the hat matrix
and residual sensitivity matrix when availability attacks occur,

Kd := (HT
d R−1Hd)−1HT

d R−1, (10)

Td := HdKd, Sd := I−Td. (11)

For the combined attacks, the attacker would still launch
FDI attacks on the remaining measurements in concert with
availability attacks, making zd changed into za,d := zd + a.
Similarly, a (ka,kd)-tuple combined attack can be defined as

Definition 3 ((ka,kd)-tuple combined attack). A combined
attack with an FDI attack vector a ∈ Rm and an availability
attack vector d ∈ {0,1}m described above is called a (ka,kd)-
tuple combined attack if ‖a‖0 = ka, ‖d‖0 = kd.

B. Security Index for Combined Attacks

Similar to the FDI attacks, if the attack vectors of a (ka,kd)-
tuple attack satisfy a = Hdc, such combined attacks can still
keep stealth as the FDI attack vector a lies on the column space
of the matrix Hd. Using the formulation of security index in
(7) for FDI attacks, we propose an intuitive security index for
combined attacks as the minimum number of measurements
that need to be compromised by the attacker,

β j := min
c,d

‖a‖0 + ‖d‖0

s.t. a = Hdc, (12a)
Hd = (I−diag(d))H, (12b)
a( j) = µ, (12c)
a(l) = 0 for all l ∈ Γ, (12d)
d(i) ∈ {0,1} for all i.

Here we also assume a( j) = µ where µ is the non-zero attack
magnitude. The result β j is the security index that quantifies
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how vulnerable measurement j is to combined attacks. The
computed β j belongs to one of the combined attacks that have
minimum ka +kd (ka +kd = β j) for measurement j. To solve this
NP-hard problem above, we propose a computation solution
which uses the big M method to formulate a MILP problem:

β
′

j := min
c,w,d

m∑
i=1

w(i) +

m∑
k=1

d(k)

s.t. Hc ≤ M(w + d), (13a)
−Hc ≤ M(w + d), (13b)
H( j, :)c = µ, (13c)
H(l, :)c = 0, for all l ∈ Γ, (13d)
w(i) ∈ {0,1} for all i, (13e)
d(k) ∈ {0,1} for all k, (13f)

where w,d ∈ {0,1}m with w(i) = 1 and d(k) = 1 meaning FDI
attack and data availability attack on measurement i and k.

The following theorem shows that the optimal solution to
(12) can be obtained from the optimal solution of (13). Hence
we denote the optimization problem (13) which computes
the combined attacks as Pa,d(H). By solving Pa(H) from (8)
and Pa,d(H) from (13), the system operators can obtain the
attack vectors and further assess the risk of attacks on the
measurements, which will be illustrated in Section V.

Theorem 1. For any index j ∈ {1, . . . ,m} and non-zero µ, let
(c∗, w∗, d∗) be an optimal solution to (13). Then an optimal
solution to (12) can be computed as (c∗, d∗), and β

′

j = β j.

Proof. The proof follows by re-writing (12) as (13). First,
note that the constraint of (12), a = (I− diag(d))Hc, can be
formulated as a set of inequality constraints with auxiliary
binary variables by using the big M method, yielding −Mw ≤
(I− diag(d))Hc ≤ Mw, where w ∈ {0,1}m and ‖a‖0 =

∑
w(i).

Since d is a vector of binary variables, the pair of inequality
constraints pertaining the i-th measurement can be written as
|(1−d(i))H(i, :)c| ≤ Mw(i). The latter can be read as{

H(i, :)c = 0, if w(i) = d(i) = 0,
|H(i, :)c| ≤ M, if w(i) = 1 or d(i) = 1,

which can be rewritten as |H(i, :)c| ≤ M(d(i) + w(i)). Hence,
recalling that a(i) = (1 − d(i))H(i, :)c, we conclude that the
constraints of (12) can be equivalently re-written as the
constraints of (13). The proof concludes by noting that the
objective functions of both problems satisfy the equality
‖a‖0 + ‖d‖0 =

∑
w(i) +

∑
d(i). �

Corollary 1.1. For any index j ∈ {1, . . . ,m} and non-zero µ, let
(c∗, w∗, d∗) be an optimal solution to (13). Then an optimal
solution to (7) can be computed as c∗, and α j = β j.

Proof. The proof follows straightforwardly from Theorem 1,
which establishes that an optimal solution to (12) can be
obtained from an optimal solution to (13): comparing (13)
and (8), we can easily see that an optimal solution to (8) can
be computed as (c∗, y∗) with y∗ = w∗+ d∗, and α j = β

′

j. Since
(8) provides the exact solution to (7), an optimal solution to
(7) can be computed as c∗, and also α j = β

′

j = β j. �

Corollary 1.1 implies that a set of compromised measure-
ments is an optimal solution to (12) if and only if this set
is an optimal solution to (7), and the two security indexes β j
and α j coincide. In fact, in [30] it was shown that the set of
compromised measurements in a ka-tuple FDI attack obtained
by solving (7) is a sparsest critical tuple containing the target
measurement j. A sparsest critical tuple is characterized by
the measurements that do not belong to a critical tuple of
lower order. A critical tuple contains a set of measurements,
where removal all of them will cause the system to be
unobservable. If any subset of the critical tuple is removed,
it would not lead to the loss of observability [26]. According
to Corollary 1.1 and its proof, we can see that the set of
compromised measurements of FDI attacks in this critical
tuple is also an optimal solution to the security index problem
(12) of combined attacks. The interpretation of the security
index problem as a critical tuple problem provides the means
for comparing security indexes of attacks with full and limited
adversarial knowledge; see Section IV-C for details.

The optimization problems Pa(H) and Pa,d(H) derived so
far in (8) and (13) could identify the compromised measure-
ments set of attacks but did not consider the attack costs.
In what follows, we include the costs in the formulation. To
simplify the discussion, we assume that the availability and
integrity attacks have the costs CA and CI , respectively, per
measurement. Thus we formulate a security index for attack
resources of combined attacks as

γa,d
j := min

c,w,d

m∑
i=1

CIw(i) +

m∑
k=1

CAd(k)

s.t. (13a)− (13f).

(14)

By making vector d in (14) to be zero, we can get the
security index γa

j for FDI attacks. We can also see that the set
of compromised measurements from the optimal solution of
(14) is also the optimal solution to (12) and (7). If CA = CI ,
this is the same case as the one described in Corollary 1.1.
For CA and CI with different values, we have the following
proposition.

Proposition 1. When CA < CI , the optimal strategy of com-
bined attack is to inject false data on the targeted measurement
j and make other measurements in the critical tuple unavail-
able to the SE, yielding a (1,β j−1)-tuple combined attack with
optimal attack cost γa,d

j = CI + (β j−1)CA. When CA > CI , the
combined attack has the same optimal strategy as the FDI
attack, i.e., injecting false data on the all measurements in
the critical tuple, yielding a (β j,0)-tuple combined attack (i.e.,
β j-tuple FDI attack) with optimal attack cost γa,d

j = β jCI .

Proof. If we take the values that satisfy CA < CI , the optimal
solution of w∗ and d∗ in (14), w.r.t. measurement j, would
lead to

∑
w∗(i) = 1 and

∑
d∗(k) = β j −1. This means that the

optimal combined attack in the case of CA < CI is to corrupt
one measurement with an integrity attack and make other
measurements in this critical tuple unavailable. If we take the
values that satisfy CA > CI , the optimal solution of w∗ and d∗
in (14), w.r.t. measurement j, would lead to

∑
w∗(i) = β j and
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∑
d∗(k) = 0, i.e., the optimal combined attack is to inject false

data on all the measurements in this critical tuple. �

As previously indicated, availability attacks can cost less
attack resources compared with integrity attacks. An intuitive
example is that the attacker uses the same tool to perform a
Man-In-The-Middle (MITM) attack on the exchanged mea-
surements between substations and the control center. Thus
the adversary is capable of interfering with the transmitted
measurements using the MITM tool, either launching FDI
or availability attacks. Unlike the FDI attack in which the
attacker has to inject specific data values and repackage the
packets carefully, the availability attack only needs to block
the measurements or modify the data to zero or random errors
[31]. Using the same MITM tool, the availability attacks
become “cheaper” to achieve than FDI attacks. Of course,
the true attack costs of different kinds of attacks launched by
different tools are hard to quantify in practice. One possible
way is to relate the attack cost to the inverse-likelihood of
the attack. Likelihood assessment of attacks using attack trees
or graphs also implies that availability attacks (e.g., DoS
attacks, jamming attacks) have higher probability to take place
considering the factors (skills, knowledge, time, etc.) [32].
Thus in the following of this paper we take the values that
satisfy CA ≤CI . The above Proposition 1 for the case CA <CI
will also be validated in Section VI-A.

IV. Attacks with Limited Adversarial Knowledge

From this section we consider the scenario in which the
adversary has limited knowledge of the system model and we
discuss how this affects the detectability of combined attacks
and FDI attacks.

A. Relaxing Assumption on Adversarial Knowledge

For the combined attacks and FDI attacks above, the ad-
versary is assumed to have full knowledge of H in (1) that
includes the topology of the power network, the placement
of RTUs and the transmission line reactance. This system
data is kept in the database of control center, which is
difficult to be accessed by the attacker. We extend the previous
analysis by replacing the full knowledge assumption. Hence,
in what follows the attacker only has limited knowledge of
the system model. In particular, the limited knowledge case
that is of interest to us is the one in which the attackers
have inaccurate network information. Now the system model
known by the adversary gets “perturbed” that system model
uncertainties exist. An attacker could acquire perturbed system
model as a result of analyzing an out-dated or estimated model
using power network topology data but limited information of
transmission line parameters [21], [22], [33].

Looking at the problem from the attacker’s perspective,
without loss of generality, the perturbed system model known
by the attacker can be denoted as H̃, such that

H̃ ,H +∆H, (15)

where ∆H ∈ Rm×n denotes the part of model uncertainty. We
still consider that the attacker uses the same linear policies to

compute attack vectors, i.e. a = H̃dc for combined attacks and
a = H̃c for FDI attacks and H̃d := (I−diag(d))H̃. Correspond-
ingly, we denote the optimization problem (8) as Pa(H̃) w.r.t
H̃ computing the FDI attacks and the optimization problem
(13) as Pa,d(H̃) w.r.t H̃ computing the combined attacks.

B. Detectability of Data Attacks

1) Combined Attacks: When the measurements are cor-
rupted by a (ka,kd)-tuple attack, the measurement residual ra,d
can be written as

ra,d = Sdza,d = Sded + Sda. (16)

As discussed in Section III-B, when the attack vectors of
the combined attack satisfy a = Hdc, the residual ra,d = Sded +

SdHdc = Sded due to SdHd = 0, then the residual is not affected
by a and no additional alarms are triggered; the BDD treats
the measurements attacked by availability attacks as a case of
missing data. However, for the attack with limited knowledge,
the attack vector a becomes a = H̃dc and Sda may be non-
zero. In this case, the residual is incremented and the attack
can be detected with some possibility.

Note that the quadratic cost function with the combined
attack becomes Ja,d(x̂) = ‖R−1/2Sded + R−1/2Sda‖22. Here the
mean of (R−1/2Sded + R−1/2Sda) is non-zero R−1/2Sda incre-
mented by the attack. Recalling the J(x̂)-test based BDD,
Ja,d(x̂) has a generalized non-central chi-squared distribution
with m−n−kd degrees of freedom under the combined attack.
We use Ja,d(x̂) as an approximation of having the non-central
chi-squared distribution χ2

m−n−kd
(‖R−1/2Sda‖22) to calculate the

detection probability, where λa,d = ‖R−1/2Sda‖22 is the non-
centrality parameter. Further we will validate such approxi-
mation using empirical results from Monte Carlo simulation
in Section VI-B. We can further obtain∫ τd(α)

0
fλa,d (x)dx = 1−δa,d, (17)

where fλa,d (x) is the PDF of χ2
m−n−kd

(‖R−1/2Sda‖22), τd(α) is
the threshold set in the BDD using (5) but with the PDF of
χ2

m−n−kd
, and δa,d is the detection probability.

2) FDI Attacks: For a ka-tuple FDI attack with limited
knowledge, the quadratic function Ja(x̂) can also be ap-
proximated to have a non-central chi-squared distribution
but with m− n degrees of freedom, namely the distribution
χ2

m−n(‖R−1/2Sa‖22). Similar to (17), the detection probability
can be computed by solving∫ τ(α)

0
fλa (x)dx = 1−δa, (18)

where λa = ‖R−1/2Sa‖22 denotes the non-centrality parameter,
τ(α) is the threshold set in the BDD using (5), and δa is the
detection probability of the FDI attack.

C. Special Case: Attacks with Structured Model Uncertainty

An interesting analysis can be made to understand what
the model uncertainty ∆H in (15) is to the adversary. As
stated in [22], the scenarios where the uncertainty is more
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structured are of greater interest. Here we assume that the
attacker knows the exact topology of the power network, but
has to estimate the line parameters. This assumption is feasible
since the attacker can access the topology information by 1)
collecting offline data such as topology maps and online data
using attacker’s own meters; 2) using market data to extract it
from locational marginal prices; 3) utilizing available power
flow measurements and compromised breaker status data, as
summarized in [34]. However, usually the attacker has limited
access to the knowledge of the exact length of the transmission
line and type of the conductor being used. Even if the attacker
obtains such knowledge, the values would get changed by the
time of implementing the attack due to weather conditions
and changes in temperature [21]. Denote the line parameters
matrix with errors as W̃ ,W + SΦ where Φ ∈ Rnt×nt is the
parameter uncertainty. Thus the model with such structured
uncertainty becomes

H̃ = P

 (W +Φ)BT

−(W +Φ)BT

B0(W +Φ)BT

⇒ ∆H = P

 ΦBT

−ΦBT

B0ΦBT

 , (19)

Now we consider the security index of attacks w.r.t. H̃
in (19). As we have discussed in Section III-B, the security
index problem can be interpreted as a critical tuple problem.
In the remaining part of this paper we adopt the following
assumption,

Assumption 1. The system with perturbed model H̃ in (19)
has the same sets of critical tuples as the system with original
model H in (1).

Assumption 1 is expected to hold in the case that the system
with H in (1) is topologically observable [35]. Defining the
security indexes for compromised measurements set under
structured uncertainty model as α̃ j and β̃ j, respectively, the
following theorem shows that the security index remains
the same although the model is perturbed with structured
uncertainty.

Theorem 2. For any measurement index j ∈ {1, . . . ,m} and
non-zero µ, under Assumption 1, let (c̃∗, w̃∗, d̃∗) be an optimal
solution to Pa,d(H̃) (H̃ is from (19)). Then there exists some c∗
such that (c∗, w∗, d∗) with w∗ = w̃∗ and d∗ = d̃∗ is an optimal
solution to Pa,d(H) , (c∗, y∗) with y∗ = w̃∗ + d̃∗ is an optimal
solution to Pa(H), and β̃ j = β j = α j = α̃ j.

Proof. The optimal solution with w̃∗ and d̃∗ identifies a spars-
est critical tuple containing measurement j for the perturbed
model H̃ in (19), which is also a sparsest critical tuple for the
model H in (1) according to Assumption 1. Then the set of
measurements in this critical tuple is an optimal solution to
Pa,d(H). According to Theorem 1 and Corollary 1.1, the set of
measurements in this critical tuple is also an optimal solution
to Pa(H). �

With respect to the security index for attack resources, let
γ̃a,d

j and γ̃a
j be the security indexes of combined attacks and

FDI attacks from (14) but w.r.t. perturbed model H̃ in (19).
We can see that the set of compromised measurements from
optimal solution to (14) w.r.t. H̃ in (19) is also the optimal

solution to (13) and (8) according to Theorem 2. When it is
the case that CA <CI , the optimal solution of w̃∗ and d̃∗ from
(14) w.r.t. H̃, would lead to

∑
w̃∗(i) = 1 and

∑
d̃∗(k) = β̃ j −1.

Such (1,β̃ j − 1)-tuple combined attack can be launched with
least attack resources when CA < CI and in the following we
show that it also can achieve minimized detectability.

As discussed in Section IV-B, the detection probability
would increase when attacker has limited knowledge of the
system model. However, for the combined attacks, the follow-
ing proposition states that the combined attacks with structured
model uncertainty can still keep stealth against the BDD if
the following conditions are satisfied: 1) structured model
uncertainty is defined as in (19); 2) Assumption 1 holds.

Proposition 2. For any index j ∈ {1, . . . ,m} and non-zero µ,
under Assumption 1, let (c̃∗, w̃∗, d̃∗) with

∑
w̃∗(i) = 1 be an

optimal solution to Pa,d(H̃) (H̃ is from (19)). Then this (1,β̃ j−

1)-tuple combined attack from (c̃∗, w̃∗, d̃∗) is a stealth attack.

Proof. The FDI attack vector of this combined attack is
a = H̃d̃∗ c̃

∗. According to Theorem 2, there exists c∗ such that
(c∗, w∗, d∗) with w∗ = w̃∗ and d∗ = d̃∗ is an optimal solution
to Pa,d(H). Using the attack strategy above, ka =

∑
w̃∗(i) = 1

and the only non-zero entry of the attack vector a is µ
while other measurements in this critical tuple are attacked
by availability attacks. Thus this combined attack is with the
vector a = (I−diag(d̃∗))H̃c̃∗ = (I−diag(d∗))Hc∗ = Hd∗c∗, which
can keep stealth w.r.t. H in (1). �

It should be noted that, Proposition 2 is independent from
the parameter uncertainty Φ. This (1,β̃ j − 1)-tuple combined
attack can always keep stealth for any parameter uncertainty
levels as long as the critical tuple is correctly identified by
solving Pa,d(H̃).

V. Risk Assessment for Data Attacks

The previous sections focus on vulnerability assessment of
SE to combined attacks with limited knowledge. Following the
procedure of risk analysis in [25], in this section we define and
analyze the risk brought by attacks with limited knowledge.

Usually the total risk of data attacks is defined as the
likelihood of attack multiplied by the potential attack impact
[5]. For a (ka,kd)-tuple combined attack, the risk metric R(a,d)
can be expressed as

R(a,d) = L(a,d)∗ I(a,d) (20)

where L(a,d) denotes the likelihood of the combined attack
with attack vectors a and d, and I(a,d) denotes the attack
impact. For the attacks with larger risk metrics, they bring
more risk to reliable system operation. In the following we
discuss how L(a,d) and I(a,d) are formulated.

A. Likelihood of Data Attacks

The attack likelihood relates to the vulnerability of the
system. In this work, the likelihood of the attack is taken as
the probability that the attack is launched and the probability
that the attack can keep stealth against the detection schemes,

L(a,d) = P(a,d)P(s|a,d), (21)
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where P(s|a,d) denotes the conditional probability of the
combined attack passing the BDD if it has been performed
successfully. For the attack with limited knowledge, the detec-
tion probability δa,d can be obtained from (17), thus we have
P(s|a,d) = 1− δa,d. In (21), P(a,d) represents the probability
that a particular adversary would perform a combined attack
and successfully corrupt the data. Obtaining meaningful and
realistic data for calculating P(a,d) remains an unsolved and
open issue for most of the established approaches [36]. The
proposed security index γ̃a,d

j w.r.t. perturbed model H̃ captures
the efforts required by a combined attack and essentially can
be related to the probability P(a,d). We assume that if the
attacks have the same security index of γ̃a,d

j , they have the
same probability of P(a,d). In this paper, to compare the
risk of attacks with the same security index, we “normalize”
P(a,d) to be 1, meaning that the attacks have been performed
successfully. The following risk metric applies to the attacks
with the same security index of γ̃a,d

j ,

R(a,d) = P(a,d)P(s|a,d)I(a,d) = (1−δa,d)I(a,d), (22)

For the ka-tuple FDI attacks with the same security index
of γ̃a

j , the formulation of risk metric is similar, i.e. R(a) =

(1− δa)I(a) where δa is the detection probability from (18),
I(a) denotes the attack impact and R(a) is the risk metric.
Thus in the case of γ̃a,d

j = γ̃a
j , the risk of combined attacks

and FDI attacks is comparable.

B. Attack Impact: Errors of Load Estimate

The estimated information from SE is used by further
applications in EMS to compute optimal control actions. These
are typically computed by minimizing network operation costs
which are obtained by solving OPF algorithms. As the work
in [13] [37] shows, the OPF application uses the load estimate
from SE as the inputs. In practice, the important outputs from
EMS are the injection estimate and OPF results which would
affect the further operations. If data attacks take place and pass
the BDD, the load estimates get perturbed which influences
the control actions. Therefore, we consider the impact metric
as a function of the bias introduced by the attack on the load
estimate.

Assuming that the actual injections are described in a vector
Lin j ∈ R

nin j where nin j is the number of buses with injections,
we consider the impact on the errors of estimated power
injections and actual power injections,

ε = L̂in j,a,d −Lin j, (23)

where L̂in j,a,d ∈R
nin j is the vector of estimated injections under

a (ka,kd)-tuple combined attack. Thus,

ε = Hin jx̂a,d −Hin jx, (24)

where x̂a,d = Kd(zd +a) = x+Kded +Kda, Hin j ∈R
nin j×n denotes

the submatrix of H by keeping the rows corresponding to
injections including loads. We can further obtain ε = Hin jKda+

Hin jKded where the term introduced by the attacks is Hin jKda.
Here Kd is the function of the matrix Hd as defined in (10).
The expected value of ε is

E(ε) = Hin jKda. (25)

We have the following definition of the attack impact metric
for combined attacks.

Definition 4. The impact metric I(a,d) for quantifying attack
impact of a combined attack with FDI attack vector a and
availability vector d on load estimate is defined as the 2-norm
of Hin jKda, i.e. I(a,d) := ‖Hin jKda‖2.

Similar to the combined attacks, we define the attack impact
metric I(a) = ‖Hin jKa‖2 for a ka-tuple FDI attack with attack
vector a. We continue to adopt the linear attack policies to
compute attack vectors for attacks with limited knowledge,
i.e., a = H̃dc for combined attacks and a = H̃c for FDI attacks.

Giving all the information above, the following Algo-
rithm V-B summarizes the risk assessment procedure for
combined attacks and FDI attacks. First, the system operators
would solve Pa(H) and Pa,d(H) as as a tool to compute
the attack vectors from security index. Then the detection
probability of attacks and the attack impact could be obtained
respectively according to 17 and Definition 4, leading to the
risk metric of (22). Thus in conclusion, the risk assessment
presented in this paper, including the computation of attack
vectors, the detection probability and the impact of attacks,
provides insights at the planning stage of the grid and offline
analysis of combined attacks in the limited knowledge case.

Algorithm 1 Risk Assessment for Combined Attacks

Step 1) Determine the attack magnitude µ. Compute attack
vectors a and d from the optimization problem
Pa,d(H̃).

Step 2) Solve (17) for obtaining the detection probability
δa,d of the combined attack with a and d.

Step 3) Calculate the attack impact metric I(a,d) according
to Definition 4.

Step 4) Compute the risk metric R(a,d) for combined at-
tack using the formulation of (22).

VI. Case Study
In this section we apply the analysis to the IEEE benchmark

system (Figure 1). We conduct simulations on DC model
for the purposes of: 1) illustrating vulnerability of SE to
combined attacks; 2) providing insights into how combined
attack can differ from FDI attack; 3) evaluating the risk of
data attacks and giving the risk prioritization. In the performed
experiments, measurements are placed on all the buses and
transmission lines to provide large redundancy. In the 14 bus
system, measurements on bus 7, bus 8 and line 7-8 are pseudo-
measurements for zero-injection buses and can not be attacked.
The per-unit system is used and the power base is 100MW.
The measurements are generated under the DC model with
Gaussian noise (σ j = 0.02 for any measurement j). For the
limited knowledge model, we assume the attacker knows the
exact topology but has estimated line parameters with errors.

A. Security Index for Vulnerability Analysis

In order to expose vulnerability of SE to data attacks, we
calculated the security index using the computation solutions
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Security Index

Figure 1. The IEEE 14-bus system. The measurements are labeled different
colors according to their security index γa,d

j from Figure 2. Here the vulnerable
measurements with small index (= 4) are color coded blue. The measurements
that have large index (> 4) are color coded green. The pseudo-measurements
(without color) on bus 7, 8 and line 7-8 can not be attacked.

Measurement Index j
0 5 10 15 20 25 30 35 40 45 50 55

S
ec
u
ri
ty

In
d
ex
es

γ̃
a
,d

j
a
n
d
γ̃
a j

0

2

4

6

8

10

12

14
FDI attacks

Combined attacks:CA/CI = 0.5

Figure 2. The security index γa,d
j under combined attacks and γa

j under FDI
attacks are plotted versus the measurement index j. Here the cost of FDI
attack on per measurement is assumed to be 1 and CA = 0.5 as CA/CI = 0.5.

of (13) (according to Theorem 1) and (8) for both combined
attacks and FDI attacks. Thus the minimum number of com-
promised measurements and attack resources needed by the
attacker to corrupt SE and pass the BDD are determined.
Figure 2 shows the security indexes γa,d

j and γa
j of combined

attacks and FDI attacks in the IEEE 14 bus system. Here the
cost of FDI attack on per measurement is assumed to be 1
(CI = 1) and CA = 0.5 as we take CA/CI = 0.5. The x-axis
indicates the measurement targeted by the attacker to inject
false data of µ = 0.1p.u.. Note that in Figure 2 the pseudo-
measurements 14, 34, 47, 48 from bus 7, 8 and line 7-8 can
not be attacked and we keep their security indexes empty. The
results illustrate the attack resources needed by the attacker to
keep stealth. The security index of combined attacks is also
showed in Figure 1 where the measurements are color coded to
indicate which ones are more vulnerable. Combining Figure 2
and Figure 1, the security index can illustrate the vulnerable
measurements in a power system.

The values of security index under combined attacks are
smaller than the ones under FDI attacks when CA < CI from
Figure 2. For instance, in order to corrupt measurement j = 10,
the FDI attack needs a value of 11 for attack resources (i.e. a
11-tuple FDI attack) while the combined attack only needs a
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Figure 3. The detection probability is plotted versus the attack magnitude.
The attacks are all under structured uncertainty model (error on the model
parameters of ±20%) and performed in the same set of 11 measurements and
the false alarm rate α is 0.05.

value of 6 (i.e. a (1,10)-tuple combined attack). This implies
that SE is more vulnerable to combined attacks with less attack
resources. The results also show that ka = 1 for the combined
attacks and the optimal attack cost is CI + (β j − 1)CA for the
case CA < CI , which is consistent with Proposition 1.

B. Detectability of Attacks with Limited Knowledge

Using the attack policy a = H̃dc for combined attacks
and a = H̃c for FDI attacks with the same given model
uncertainty, the detection probability of attacks can be obtained
according to (17) and (18). From Theorem 2 we see that the
compromised measurements set from the optimal solutions of
(14) w.r.t. H̃ in (19) is in the same critical tuple with the one
w.r.t. H in (1). Thus a set of 11 measurements (a critical tuple)
containing measurement j = 10 needs to be compromised by
the attacker from the security index in Figure 2. For the
sake of comparison, the combined attacks and FDI attacks are
performed in the same set of these 11 measurements. Figure 3
shows the detection probability of combined attacks and FDI
attacks targeting these 11 measurements, with the structured
model uncertainty (error on the line parameters of ±20%).
In addition to the theoretical results, the empirical detection
probability results are also presented in Figure 3 for the 11-
tuple FDI attack and (2,9)-tuple combined attack respectively.
Figure 4 shows the detection probability of combined attacks
and FDI attacks with different levels of model uncertainty
(error on line parameters of ±10%, ±20%, ±30%, ±40%).

To obtain the empirical detection probability in Figure 3, we
use Monte Carlo simulations. Taking the (2,9)-tuple combined
attack as an example, 200 different points of attack magnitude
µ were taken in random from 0 to 0.5 p.u. and the correspond-
ing attack vectors were built. For each attack vector with the
taken magnitude µ, total 1000 Monte Carlo runs were executed
to obtain the detection probability of such attack. In each
Monte Carlo simulation, the measurements were created by
the DC model with Gaussian noise and the attack vector was
added to the measurements. For the attacked measurements,
the SE and BDD with the false alarm rate 0.05 were executed.

From Figure 3 we can see that the empirical results of
detection probability follow the theoretical one. This proves
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Figure 4. The detection probability is plotted versus different levels of model
uncertainty (error on the model parameters of ±10%, ±20%, ±30%, ±40%,
respectively). The combined attacks and FDI attacks are performed in the
same set of 11 measurements and the attack magnitudes are all µ = 0.15p.u.
here. The false alarm rate α is 0.05.

that using the approximation of the distribution of Ja,d(x̂) and
Ja(x̂) can provide the detection probability, and it is reliable
to use theoretical detection probability for risk analysis in the
following. The results in Figure 3 illustrate that combined
attacks can have lower detection probability comparing with
FDI attacks, meaning that SE is more vulnerable to combined
attacks as they have higher probability not to be discovered
by the BDD. An interesting result is that with smaller ka the
combined attack also has lower probability to be detected.
In the case that ka = 1 and kd = 10, the (1,10)-tuple combined
attack can keep stealth, which is consistent with Proposition 2.
The results in Figure 4 show that, for the combined or FDI
attacks with different levels of model uncertainty, the detection
probability of attacks would increase when the attacker has an
bigger error on the transmission line parameters. This can be
expected as the attacker has less knowledge to build attack
vectors. Besides, combined attacks still have advantages in
keeping steath as they can have lower detection probability
especially the combined attacks with smaller ka, and the unde-
tectability of the (1,10)-tuple combined attack is independent
of parameter uncertainty as discussed in Proposition 2.

C. Risk Metrics for Attacks

We continue with the risk analysis of combined attacks.
Simulations were conducted on the same scenarios as Section
VI-B where the attacker manipulates the set of 11 measure-
ments (a critical tuple). We analyze the attack impact and
present the risk of the combined attacks and FDI attacks. For
the risk analysis, we take the attack cost values that satisfy
CA = CI = 1, thus the security indexes γ̃a,d

j and γ̃a
j w.r.t. H̃ in

(19) of these attacks are equal to each other and the probability
P(a,d) can be “normalized” as discussed in Section IV-B.
First, for the attacks with specific model uncertainty (error
on the transmission line parameters of ±20%), the results for
attack impact metrics versus detection probability are given
in Figure 5, and the values of risk metrics for combined
attacks and FDI attacks versus attack magnitude are shown
in Figure 6. Second, we also show the risk metric values
of combined attacks and FDI attacks with different levels of
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Figure 5. The attack impact metric is plotted versus the detection probability.
The attacks are all under structured uncertainty model (error on model
parameters of ±20%) and performed in the same set of 11 measurements.
Here we assume CA = CI = 1 and the false alarm rate α is 0.05.

model uncertainty (error on line parameters of ±10%, ±20%,
±30%, ±40%) in Figure 7.

Under the perturbed model with uncertainty, the attacker has
the possibility to be detected by the BDD while introducing
errors on load estimate. From Figure 5, we see that combined
attacks can have similar attack impact metrics with FDI attacks
but lower detection probability with the same attack magnitude
µ (0.15 p.u. or 0.25 p.u. as shown in Figure 5). Especially the
(1,10)-tuple combined attack has larger impact metrics than
attacks with limited knowledge for the both cases that attack
magnitude µ = 0.15p.u. or µ = 0.25p.u..

For the risk metrics in Figure 6, when the attack magni-
tude µ increases, the risk metric increases due to the low
detection probability. After µ reaches certain values, the risk
metric decreases since the attacks can be discovered with
high probability. It’s also shown that combined attacks can
have larger risk metrics especially the cases of (1,10)-tuple
and (2,9)-tuple combined attacks. It should be noted that
though we assume CA = CI to obtain the risk metrics, the risk
prioritization of these attacks in Figure 6 would not change if
CA <CI is assumed. This is because the combined attacks can
be launched with less attack resources when CA <CI , resulting
in larger risk values comparing with FDI attacks. Figure 7
illustrates that with bigger errors on the model parameters, the
risk metrics would decrease for most cases of attacks, meaning
that the system faces less risk when the attacker has large
model uncertainty in building attack vectors. From Figure 7
we can see, combined attacks with smaller ka would bring
more risk to the system under each level of model uncertainty
and the (1,10)-tuple combined attack has the largest risk metric
independently of model uncertainty. This is due to the fact that
such kind of attack can always succeed in keeping stealth even
with limited knowledge of the system model.

D. Discussion

1) Computation Efficiency: In this paper we use the big
M method to express the security index problem as a MILP.
To show the computation time of this method, we calculated
security index for the IEEE 14 bus, 39 bus and 118 bus
systems, all of which are with full measurements for the sake
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Figure 6. The risk metric is plotted versus the attack magnitude. The attacks
are all under structured uncertainty model (error on model parameters of
±20%) and performed in the same set of 11 measurements. Here we assume
CA = CI = 1 and the false alarm rate α is 0.05.
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Figure 7. The risk metric is plotted versus different levels of model uncertainty
(error on the model parameters of ±10%, ±20%, ±30%, ±40%, respectively).
The attacks are performed in the same set of 11 measurements and the attack
magnitudes are all µ = 0.15p.u.. Here we assume CA = CI = 1 and the false
alarm rate α is 0.05.

of comparison. Note that the big M method does not need the
full measurements assumption. The computation time for the
four IEEE benchmarks is listed in Table I. The computation
was performed on a PC with 3.5 GHz CPU and 8 GB of RAM.
The MILP problems were solved using the CPLEX for Matlab
where the execution time of the algorithm for calculating all
the security indexes of each IEEE benchmark was recorded.

Table I shows that when the system becomes larger, the
computation time increases. The MILP formulation imposes
challenges for computation for large-scale power systems.
However, this method could be used off-line in the assessment
of the system vulnerability. Faster computation time can be
achieved on the expense of accuracy using relaxations (such
as 1-norm relaxation providing an overestimate of the security
index [8]) or some assumptions (such as the full measurements
assumption used in the min-cut algorithm [28], [30]).

2) Existence of a detector for availability attack: It should
be noted that our previous results assume that the SE treats
the availability attacks as missing data and no additional alerts
are triggered. Although the typical BDD schemes fail to detect
availability attacks, a new detector could be designed for
combined attacks.

Here we propose an initial missing data detection (MDD)
scheme. We assume that, under normal conditions each mea-

Table I
Computation time of security index for the IEEE benchmarks

14 bus 39 bus 118 bus
Time 4.2s 25.6s 117s

surement may be missing with a given small probability. In
particular, we say that the i-th measurement is missing if
u(i) = 1, where u(i) ∈ B is a Bernoulli distributed random
variable with P(u(i) = 1) = pi. The Bernoulli distributed random
variables u(i)i=1,...,m are assumed to be independent and identi-
cally distributed, with pi = p0 for all i = 1, . . . ,m. The missing
data due to abnormal conditions can be detected based on the
random variable u ∈ Bm. Parameterizing u(i) as u(i) ∼ B(p),
we are interested in testing the hypothesis H1 with a null
hypothesis H0. If H0 is accepted, that means there is no
availability attack and alternatively availability attack exists:
• H0 : p ≤ p0;
• H1 : p > p0.
In other words, we are interested in differentiating between

cases of low probability of missing data, versus cases where
missing data occurs with higher probability. Defining the
auxiliary statistic ru ,

∑m
i=1 u(i) = 1>u which corresponds to the

number of missing measurements, we know that ru follows a
binomial distribution, namely ru ∼ B(m, p) with the likelihood
function L(p;u) , m!

(m−ru)!ru! (1− p)m−ru pru . Thus the statistical
test for rejection H0 is

ru > τ̄u,

where τ̄u is computed to bound the probability of false-alarm
of the statistical test.

Recall the current BDD scheme in SE described in Section
II-B. If the above MDD scheme is implemented in SE together
with the BDD, we can obtain the detection probability of
combined attacks. Note that the random variables ra,d in (16)
and ru are not independent since the unavailable measurements
will influence the degrees of freedom and the covariance
matrix of the residual vector ra,d. Thus it’s difficult to express
the whole detection probability of combined attack under these
two detectors mathematically. We use Monte Carlo simulations
instead. For each taken attack magnitude, the given combined
attack was implemented through 1000 Monte Carlo runs while
in each run the measurements were generated with random
errors. If this combined attack triggered any alert on these two
detectors, we say it was detected. Here we provide Figure 8 to
show the detection probability of (6,5)-tuple combined attack
(from Figure 3) when the proposed MDD is equipped with
the typical BDD. The results show that the MDD could help
in detecting the combined attacks.

3) AC Power flows: In this paper for the first time we look
at combined attacks under limited knowledge and conduct risk
analysis on these attacks. Here we are focusing on establishing
the concept of risk of the combined attacks and explore this
concept in the DC state estimation at the EMS of control. We
hope this can be a stepping stone towards addressing risk of
combined attacks in the AC power flows model.

The combined attacks explored in this paper would naturally
be more complex to compute under the AC model. In the case
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Figure 8. The detection probability is plotted versus the attack magnitude.
The same (6,5)-tuple combined attack from Figure 3 is tested with both cases:
one with BDD and MDD, the other one only with BDD (without MDD). For
MDD test, p0 is assumed to be 0.06.

of AC state estimation, an attacker would need to have a better
knowledge of the system and its operating state. The detection
probability of the combined attack constructed based on the
DC model will be higher and the risk of a successful attack
will be lower. Thus, the results of this paper cannot be directly
extrapolated to the case with AC state estimation. However, we
believe that the proposed formulation can be used to explore
the AC case by replacing the DC modelH with a linearization
of the AC nonlinear power flow model at a given system state
of interest.

VII. Conclusion

In this paper we see that combined attacks can succeed with
less resources (if CA < CI) and lower detection probability
when the adversarial knowledge is limited, bringing more risk
to reliable system operation. It also should be noted that this
paper assumes that the SE treats unavailable measurements
due to attacks as a case of missing data, although the amount
of missing data under attacks is larger than the one under
normal conditions. In the discussion we also showed the
potentiality of designing a detector for availability attacks. Be-
sides, availability attacks like DoS attacks could trigger alerts
on ICT-specific measures (e.g., Intrusion Detection System).
These two features give the opportunities to develop better
cross-domain detection schemes for availability portion of
the attacks improving the overall combined attacks detection.
Other research directions to explore in the future include
evaluating physical impact of combined attacks and exploring
the vulnerability of AC state estimation to combined attacks.
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