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Abstract

In this paper the existence of unknown input observers for networks of interconnected second-order linear time invariant systems is
studied. Two classes of distributed control systems of large practical relevance are considered. It is proved that for these systems one can
construct a bank of unknown input observers, and use them to detect and isolate faults in the network. The result presents a distributed
implementation. In particular, by exploiting the system structure, this work provides further insight into the design of UIO for networked
systems. Moreover, the importance of certain network measurements is shown. Infeasibility results with respect to available measurements
and faults are also provided, as well as methods to remove faulty agents from the network. Applications to power networks and robotic
formations are presented. It is shown how the developed methodology apply to a power network described by the swing equation with a
faulty bus. For a multi-robot system, it is illustrated how a faulty robot can be detected and removed.

Key words: Fault Detection and Isolation, Distributed Algorithm, Distributed Detection

1 Introduction

Automatic detection of system faults is of growing impor-
tance as the size and complexity of systems rapidly increase.
Most of the available literature on model-based fault de-
tection and isolation (FDI) focuses on centralized systems
where the FDI scheme has access to all the available mea-
surements and the objective is to detect and isolate faults
occurring in any part of the system [5,8,12]. We further note
that while most works dealing with model-based fault detec-
tion consider a first-order state space system, it is possible
to deal with second-order vector space systems in a fash-
ion akin to that of [7]. Distributed control and monitoring is
more suitable than centralized for large-scale interconnected
dynamical systems such as power networks and multi-agent
systems due to its lower complexity and less use of network
resources [18]. Traditional FDI schemes may not be applied
to distributed systems, since not all measurements are avail-
able in every node.

Some recent work has been done on the design of distributed
FDI scheme. In [9], a bank of decentralized observers is built
where each observer contains the model of the entire system
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andretei@kth.se (André M. H. Teixeira), hsan@ee.kth.se
(Henrik Sandberg), kallej@kth.se (Karl H. Johansson).

and receives both measurements from the local subsystem
and information transmitted from other observers. A similar
approach is taken in [6] where the observers communicate
with each other, but they only possess models of their re-
spective local subsystems. A mixing procedure is used to
reconstruct the state of the overall system from the local es-
timates. Recently a distributed FDI scheme for a network
of interconnected first-order systems was proposed. The au-
thors analyzed limitations on fault detectability and isolabil-
ity in a system theoretic perspective [14].

Power networks are large-scale spatially distributed systems.
Being a critical infrastructure, they possess strict safety and
reliability constraints [17]. Monitoring the state of the sys-
tem is essential to guarantee safety. Currently this is typi-
cally done in a centralized control center through a single
state estimator. The core methodology for state estimation of
power systems dates from 1970, [1,16]. Due to the low sam-
pling frequency of the sensors in these systems a steady state
approach is taken, which only allow for an over-constrained
operation of the system to ensure reliability. Furthermore
faults are handled mainly by hardware devices deployed in
the field, so local events leading to cascade failures may
pass undetected, since the global state of the system is not
taken into account. In recent years, measurement units with
higher sampling rate have been developed, e.g. Phasor Mea-
surement Units (PMU), opening the way to dynamic state
estimators and observer-based fault detection schemes tak-
ing in account the dynamics of the system. Such centralized
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FDI schemes have been proposed in the recent literature,
see [2,15]. However, to the best of the knowledge of the au-
thors, no distributed method has been proposed to carry out
FDI in power networks, despite their inherent decentralized
nature.

Contributions. In this paper we address the problem of
distributed FDI in a network of nodes with double integrator
dynamics, whose interactions are described by a distributed
control law. We show how FDI for some power networks and
distributed robotic systems fit the problem description. We
design continuous-time unknown input observers to achieve
the goal. The existence of such observers is established for
various conditions on the node interactions under sensing
structures. The results are ilustrated on examples in power
networks and autonomous mobile node formations.

Outline. The outline of the paper is the following. In Section
2 the problems that are being addressed are formulated. In
Section 3 we recall the FDI tools that we use to obtain
the main result of this paper. In Section 4, we propose a
solution to the problems posed in Section 2. In Section 5 the
application of the results to two practical problems is studied
via illustrative examples. Conclusions and suggestions for
future work are given in Section 6.

2 Problem Formulation

Consider a network of N interconnected nodes and let
G(V,E) be the underlying graph, whereV , {i}N1 is the ver-
tex set, with i ∈ V corresponding to node i, and E ⊆ V×V
is the edge set of the graph. The undirected edge {i, j} is
incident on vertices i and j if nodes i and j share a com-
munication link, and a positive weight is associated with
this link. Moreover, Ni = { j ∈ V : {i, j} ∈ E} is the neigh-
borhood set of i. Each node i is assumed to have double
integrator dynamics

ξ̇i(t) = ζi(t) (1a)
ζ̇i(t) = ui(t) + vi(t), (1b)

where vi(t) is a scalar known external input, ξi, ζi are the
scalar states, and ui is the control given by the linear control
law

ui(t) = −κiζi(t) +
∑
j∈Ni

wi j

[
(ξ j(t) − ξi(t)) + γ(ζ j(t) − ζi(t))

]
,

(2)
where wi j ∈ R>0, and κi, γ ∈ R≥0 for i, j = 1, . . . ,N. We
say that node k ∈ V is faulty if for some functions fξk(t)
and fζk(t) not identical to zero either ξ̇k(t) = ζk(t) + fξk(t), or
ζ̇k(t) = uk(t) + vk(t) + fζk(t). The functions fξk(t) and fζk(t)
are denoted fault signals. It is assumed that the faulty node
injects fault in only one of the states.
Remark 1. The variables ξi and ζi can be interpreted as
position and velocity of node i, respectively, for a mobile

system, or as phase and frequency in the context of power
networks, as further discussed in Section 5.

The closed-loop dynamics of the networked system in the
presence of faults can be written as

ẋ(t) = Ax(t) + Bv(t) + B f f (t)
y(t) = Cx(t),

(3)

where x(t) = [ξ1(t), . . . , ξN(t), ζ1(t), . . . , ζN(t)]>.. The sig-
nal f (t) ∈ Rm is a vector of unknown fault signals, y(t) ∈ Rp

is the output vector, and A, B, B f , and C are matrices of
appropriate dimensions. More specifically, we have

A =

 0N IN

−L −γL − κIN

 , B =

 0N

IN

 , (4)

where L is the Laplacian matrix and κ = diag(κ1, . . . , κN).
The i j-th entry of L, Li j, is equal to −1 if i and j share
a link and zero otherwise, moreover, Lii = −

∑
j=1, j,i

Li j. We

call the faults f (t) additive faults, see [8].

Before stating the problems, we define what is meant by
fault detectability and isolability for systems (3) in the fol-
lowing [8].
Definition 1 (Detectable and Isolable Fault). Given the sys-
tem (3), m scalar faults f (t) = [ f1(t), . . . , fm(t)]> are de-

tectable and isolable if rank

sI − A B f

C 0

 = n + m for almost

all s ∈ C.

A fault is thus detectable if the transfer function from fk(t)
to y(t) is not identical to zero. Isolable faults relate to input
observability and means that any simultaneous occurrence
of faults should lead to a change in the output. We further
note that the FDI scheme proposed in this paper can detect
almost all faults. That is, there may be values of s ∈ C for
which such matrix has not full rank. Hence there may be
some faults generating zero dynamics, which, by definition,
do not appear in the system output. These faults cannot be
detected using the scheme proposed in this paper.

Note that B f is a matrix such that each of its columns b fk
has its entries corresponding to the states of node k as the
only non-zero entries. Each node k has a scalar fault signal
fk(t) with distribution vector b fk . We say node k is faulty if
fk(t) is not identical to zero.

The measurement matrix C may be viewed as a design pa-
rameter to be chosen in order to ensure the feasibility of the
distributed FDI scheme with respect to a predetermined set
of faults to be detected. We assume that each node i only
measures states within its neighborhood, thus ensuring the
distributed nature of the FDI scheme. As it will be shown
later on, the specific structure of a feasible local measure-
ment matrix will depend on the faults to be detected.

2



In this paper, we solve the following problems:
Problem 1. How can each node of the network detect and
isolate a faulty agent?
Problem 2. How can the faulty agent be automatically re-
moved?

We propose a solution to these two problems for two dif-
ferent classes of distributed control laws in the coming sec-
tions. In next section we introduce the mathematical tool
that we use. Then, in Section 4 we solve Problems 1 and 2,
and give conditions for when the solutions exist.

3 Model-Based Fault Detection Preliminaries

This paper focuses on observer-based FDI methods. In spe-
cific we deal with unknown input observers (UIOs), which
have been thoroughly analyzed and developed during the
past decade [5, 8]. We now present UIOs and their applica-
tion to FDI for centralized linear control systems. A common
technique used in model-based fault diagnosis is to generate
a set of residuals which indicate the presence of a fault. The
residual is a fault indicator computed from the difference
between the measurements and their estimates. It should be
close to zero if and only if the fault is not present.

Consider the linear fault-free system under the influence of
an unknown input d(t) ∈ Rm−1 described by

ẋ(t) = Ax(t) + Bv(t) + Ed(t)
y(t) = Cx(t).

(5)

The system in presence of faults is given by

ẋ(t) = Ax(t) + Bv(t) + Ed(t) + B f f (t)
y(t) = Cx(t).

(6)

We assume that the matrices E and B f have full column rank.
Remark 2. Note that the condition on B f being full column
rank is not restrictive, since any singular matrix D ∈ Rn×l

can be decomposed in D = D1D2, with D1 having full
column rank. This implies, however, that not all faults are
isolable, as follows from the analysis in Section 4.

The matrix E is called a disturbance distribution matrix,
since it contains information on how a vector of unknown
input disturbances affect the states of the system.

A full-order observer for the fault-free system (5) is de-
scribed by:

ż(t) = Fz(t) + T Bv(t) + Ky(t)
x̂(t) = z(t) + Hy(t),

(7)

where x̂(t) ∈ Rn is the estimated state and z(t) ∈ Rn is the
observer’s state. Note that if we choose F = A−KC, T = I,
and H = 0 we have a full-order Luenberger observer. The

observer matrices must be designed to achieve the decou-
pling from the unknown input and meet requirements on the
stability of the observer. Choosing the matrices F,T,K,H to
satisfy the following conditions

F = (A − HCA − K1C), T = (I − HC)
K = K1 + K2, K2 = FH, (HC − I)E = 0,

(8)

we have the estimation error dynamics

ė(t) = Fe(t). (9)

where e(t) = x(t)−x̂(t). Now we have the following definition
for a UIO.
Definition 2 (UIO). A state observer is a UIO if the state es-
timation error e(t) approaches zero asymptotically, regard-
less of the presence of the unknown input d(t).

We conclude that if (8) is satisfied and F is stable, then the
observer (7) is a UIO. The following proposition from [5]
formalizes this.
Proposition 1. There exists a UIO for (5) if and only if

(1) rank(CE) = rank(E)
(2) (C, A−HCA) is a detectable pair, where H is given by

(8).

For a proof and more details the reader is referred to [5, 8].
As suggested in [5], a possible method of detecting and iso-
lating the faults is to use the so called generalized observer
scheme (GOS), where we construct a bank of observers gen-
erating a structured set of residuals such that each residual is
decoupled from one and only one fault, but being sensitive
to all other faults. Suppose there is a single fault, fi(t) , 0.
In order to render the observer insensitive to fi(t), this fault
is regarded as an unknown input. The system (6) for d ≡ 0
is equal to

ẋ(t) = Ax(t) + Bv(t) + B f−i f−i(t) + b fi fi(t)
y(t) = Cx(t),

(10)

where b fi is the i-th column of B f , fi(t) the i-th component
of f (t), B f−i is B f with the i-th column deleted and f−i(t)
the fault vector f (t) with its i-th component removed. Note
that fi(t) can be considered as a disturbance that we want to
decouple (b fi is analogous to E in (6)).The UIO decoupled
from b fi has thus the same structure as (7) and is described
by

żi(t) = Fizi(t) + TiBv(t) + Kiy(t)
x̂i(t) = zi(t) + Hiy(t).

. (11)

We introduce residuals to indicated faults.
Definition 3. A residual ri(t) is a fault indicator function
that satisfies

‖ri(t)‖ = 0⇔ ‖ f−i(t)‖ = 0.

3



It is easy to show that we have the following observer error
and residual dynamics

ėi(t) = Fiei(t) − TiB f−i f−i(t)
ri(t) = Cei(t)

. (12)

where ei(t) = x(t)− x̂i(t) is the observer error and ri(t) is the
corresponding residual. Note that the residual dynamics are
driven by the k-th fault if Tib fk , 0, k , i.

We introduce the following detection and isolation condition
for fault fi(t),

‖ri(t)‖ < Θ fi∥∥∥r j(t)
∥∥∥ ≥ Θ f j ,∀ j , i,

(13)

where Θ fi ,Θ f j > 0 are isolation thresholds, which can be
constant or time varying. If (13) is satisfied, we conclude that
there is a fault affecting the i-th component of the system.
Note that the selection of Θ fi is particularly important. The
interested reader may refer to [10] and references there-in
for more information

The approach presented above is feasible only if a single
additive fault is present. To isolate multiple faults, one can
repeat the abovementioned procedure for each of the poten-
tial fault combinations. We can derive similar observers for
all faults and then use (13) to isolate each of them. Next we
show that one can construct UIOs also for classes of net-
worked systems.

4 FDI for Networked Systems

In Sections 4.1 and 4.2 we solve Problem 1 of Section 2 by
considering two different distributed control laws that are
special cases of (2) and show that UIOs can under certain
conditions be applied in both cases. Section 4.3 presents the
solution to Problem 2.

4.1 UIO for Position Distributed Control

Consider the networked system introduced in Section 2 with
the following control law

miui(t) = −diζi(t) +
∑
j∈Ni

wi j

(
ξ j(t) − ξi(t)

)
. (14)

where mi,wi j, di > 0. If we make the physical interpretation
that ξi(t) and ζi(t) are position and velocity of node i, and mi
can be interpreted as the agent’s mass. The nodes under the
control law (14) move towards the position of their neighbors
while damping their current velocity.

As in Section 2, assume that

ξ̇k(t) = ζk(t) + fk(t) (15)

where fk(t) corresponds to a fault in node k. In the presence
of this fault, we have

ẋ(t) = Ax(t) + bk
f fk(t) (16)

where A =

 0N IN

−M̄L −M̄D̄

, B =
[
0N M̄

]>
, M̄ =

diag
(

1
m1

, · · · ,
1

mN

)
, D̄ = diag (d1, · · · , dN), and bk

f =

[b̄k
f
> 01×N]> where b̄k

f is an N dimensional vector with
all zero entries except one that corresponds to the faulty
node k. Furthermore, we assume the nodes have access to

yi(t) = Cix(t), Ci =
[
C̄i 0|Ñi |×N

]
, i = 1, . . . ,N, (17)

with C̄i being an |Ñi| by N matrix with full row rank, where
each of the rows have all zero entries except for one entry
at the j-th position that corresponds to those nodes that are
neighbors of i, where Ñi = Ni ∪ {i} and j ∈ Ñi.

To solve Problem 1, we show that one can construct a UIO
at any given node i under the control law (14) using mea-
surements (17).
Theorem 1. Consider the distributed control system with a
fault in node k given by (16) and local measurments (17). If
G is connected and k ∈ Ni, then there exists a UIO for node
i.

Proof. First we show that

rank
(
Cibk

f

)
= rank

(
bk

f

)
= 1.

Denote the row of Ci that reads the output of node k, ck
i . It

is obvious that ck
i bk

f = 1 and c j
i b

k
f = 0, j , k. Hence, Cibk

f
is a vector with zero entries except one which is equal to 1,
thus the rank is equal to 1. This condition is equivalent to
condition (1) of Proposition 1.

Then we show that rank(D) = 2N+1 for all Re(s) ≥ 0 where

D =

 sI2N − A bk
f

Ci 0|Ñi |×1

, which is equivalent to to Proposi-

tion 1 (2) and also shows the fault is detectable according
to Definition 1. We have

rank(D) = rank


sIN −IN b̄k

f

M̄L sIN + D̄M̄ 0N×1

C̄i 0|Ñi |×N 0|Ñi |×1
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Applying some row and column operations we obtain

rank(D) = rank


0N −IN b̄k

f

a(s) 0N b(s)

C̄i 0|Ñi |×N 0|Ñi |×1

 ,
with a(s) = s2IN + sD̄M̄ + M̄L, and b(s) = (sIN + D̄M̄)b̄k

f .

We apply a state transformation

x̄ = Px = [ξĩ1 , · · · , ξĩ|Ñi |
, ξī1 , · · · , ξī|N̄i |

,

ζĩ1 , · · · , ζĩ|Ñi |
, ζī1 , · · · , ζī|N̄i |

]>,

where ĩ j ∈ Ñi, ī j ∈ N̄i, and C̄∗i = C̄iP = [I|Ñi |
0|Ñi |×N̄i

], where
Ñi = i ∪ Ni and N̄i = V \ Ñi. After this operation we can

write the Laplacian as L̄ = P−1LP =

 L|Ñi |
l|Ñi |×|N̄i |

l|N̄i |×|Ñi |
L|N̄i
|

.

Furthermore P−1M̄P =

 M̄1 |Ñi |
0|Ñi |×|N̄i |

0|N̄i |×|Ñi |
M̄2 |N̄i

|

, P−1D̄P = D̄1 |Ñi |
0|Ñi |×|N̄i |

0|N̄i |×|Ñi |
D̄2 |N̄i

|

 , b̃k
f = P−1b̄k

f , and b̃k∗
f = P−1(sIN+D̄M̄)b̄k

f .

After applying the transformation we have

rank(D) = rank


0|N̄ |×|Ñi |

0|N̄i |×|N̄i |
−IN b̃k

f

c(s) M̄1l|Ñi |×|N̄i |
0|Ñi |×N b̃k∗

f

M̄2l|N̄i |×|Ñi |
d(s) 0|N̄i |×N 0|N̄i |×1

I|Ñi |
0|Ñi |×|N̄i |

0|Ñi |×N 0|Ñi |×1


,

with c(s) = M̄1L|Ñi |
+ s2I|Ñi |

+ sM̄1D̄1, and d(s) = M̄2L|N̄i |
+

s2I|N̄i |
+ sM̄2D̄2. It is evident that the first and the third

columns are independent of the rest, thus

rank(D) = |Ñi| + N + rank

 M̄1l|Ñi |×|N̄i |
b̃k∗

f

M̄2L|N̄i |
+ s2I|N̄i |

+ sM̄2D̄2 0|N̄i |×1

 .
We know from [4] that any principal submatrix of the Lapla-
cian matrix is invertible so the last column is independent of
the rest as well, hence rank(D) = |Ñi|+N + |N̄i|+1 = 2N +1.
This rank equality is equivalent to condition (2) of Proposi-
tion 1 [5]. Satisfying the two conditions of Proposition 1 the
existence of a UIO for the system (16) with measurements
(17) and a fault in node k is established. �

Remark 3. Note that if the graph is not connected, the net-
worked system (16) can be decomposed into several decou-
pled subsystems, each corresponding to a connected subset

of the network. The conclusion of Theorem 1 then applies
to each subsystem.

The existence of a UIO according to Theorem 1 leads to the
possibility to detect a fault at node k from node i using the
at methods described in Section 3.

In Theorem 1 we stated that a fault in ξk can be isolated with
the measurements of the form (17). In the next theorem we
identify faults that cannot be isolated.
Theorem 2. Consider the system (16). For any of the fol-
lowing pairs of Ci and bk

f , no UIO of the form (7) exists:

(i) bk
f = [b̄k

f
> 01×N]>, Ci =

[
0|Ñi |×N C̄i

]
(ii) bk

f = [01×N b̄k
f
>]>, Ci =

[
0|Ñi |×N C̄i

]
(iii) bk

f = [01×N b̄k
f
>]>, Ci =

[
C̄i 0|Ñi |×N

]
Proof. To see that no UIO exists for (i) and (iii), we simply
verify that

rank
(
Cibk

f

)
= rank

(
bk

f

)
= 0,

so the first condition of Proposition 1 is not satisfied. For
(ii), similar to the calculations in proof of Theorem 1, for
the case where s = 0, we have

rank(D) = rank


0N −IN b̄k

f

M̄L 0N D̄M̄b̄k
f

0|Ñi |×N C̄i 0|Ñi |×1

 . (18)

Recall that L is rank deficient. Then, it follows that the
first column block above is not full column rank. Hence the
second condition of Proposition 1 is not satisfied. �

Cases (i) and (iii) of Theorem 2 suggest that if there is
an unknown input affecting one of the states of one of the
nodes in a network, it is not possible to have a UIO without
measuring the same state throughout the network as the one
affected by the unknown input. For example, if a fault is
affecting the velocity of one of the nodes, by measuring
positions alone we cannot have a UIO to observe the states
of the network. On the other hand, in Case (ii) we see that
the first condition of Proposition 1 is satisfied, but a UIO still
does not exist. What happens in this case is that the system
is not detectable, as seen by observing the first two columns
of (18). However, by having access to more measurements
one can construct a UIO to detect and isolate faults as seen
next.

We now introduce conditions for existence of a UIO to detect
the fault

ζ̇k(t) = ui(t) + vi(t) + fk(t), (19)
where again fk(t) corresponds to a fault in node k.
Theorem 3. Consider the distributed control system with a
fault in node k given by (16) and local measurments (17)
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with Ci =

 C̄i 0|Ñi |×N

0|Ñi |×N C̄i

, where C̄i is a |Ñi| by N matrix,

and bk>
f =

[
01×N b̄k>

f

]
with bk

f being an N by 1 vector with

k-th entry as its only nonzero entry. If G is connected and
k ∈ Ni, then there exists a UIO for node i.

4.2 UIO for Position–Velocity Distributed Control

Now we consider the existence of UIOs for the distributed
control law:

ui(t) =
∑
j∈Ni

wi j

[
(ξ j(t) − ξi(t)) + γ(ζ j(t) − ζi(t))

]
. (20)

Again, interpreting ξi(t) and ζi(t) to be position and velocity
of node i, the nodes under the control law described by
(20) move towards the position of their neighbors while
penalizing not only the position differences (as previously)
but also penalizing the velocity difference. The dynamics of
the networked system with a faulty node k is

ẋ(t) = Ax(t) + bk
f fk(t) (21)

where

A =

 0N IN

−L −γL

 , (22)

and L is the weighted Laplacian matrix with the weight

wi j > 0, γ > 0, bk>
f =

[
b̄k>

f 01×N

]
with b̄k

f being an N by 1
vector with k-th entry as its only nonzero entry. We further
assume that node i measures

yi(t) = Cix(t), (23)

Ci =

 C̄i 0|Ñi |×N

0|Ñi |×N C̄i

, where C̄i is a |Ñi| by N matrix of

the same structure as considered before. Now we have the
following theorem.
Theorem 4. Consider the distributed control system with a
fault in node k given by (21) and local measurments (23),
and the cases where

(1) bk>
f =

[
b̄k>

f 01×N

]
, or

(2) bk>
f =

[
01×N b̄k>

f

]
with b̄k

f being an N by 1 vector with k-th entry as its only
nonzero entry. If G is connected and k ∈ Ni, then there exists
a UIO for node i.
Remark 4. Proofs of Theorems 3 and 4 are similar to the
proof of Theorem 1 and are therefore omitted.

So far we have established what type of measurements
should be available at node i to be able to detect a fault in

Fault detected
   at              ?

Set system 
variables

Construct UIOs for 
FDI at any given i

k ∈ Ni

Execute FDI at i

Remove node k 
from the graph

YesNo

Fig. 1. Faulty Node Removal and Distributed Control Law In the
Presence of Fault

k ∈ Ni using a UIO fault detection scheme. More specifi-
cally we have shown that if a node aims to detect a fault in
a state of one of its neighbors using a UIO based scheme, it
has to measure the same state of all of its neighbors. In the
next section we address the problem of reconfiguring the
distributed control law after detecting a fault in the network.

4.3 Faulty Node Removal

In this section, we make the following assumptions for the
considered graph. We assume that the graph G is 2-vertex-
connected, i.e., after losing any single vertex it remains
connected. This results in the graph G to be also 2-edge-
connected, i.e., after losing any single edge it remains con-
nected. Moreover, we consider the case where there is at
most one faulty node, k, in the formation and the fault is ei-
ther in ξk(t) or in ζk(t). We propose the algorithm described
in Fig. 1 to solve the problem of automatically reconfiguring
the distributed control law to cope with a faulty node.

Now, consider the network described in Section 2 with con-
stant external inputs v, where v , 0 ∈ R2N , and the assump-
tions previously made. Consider the stability of this system
where ẋ(t) = Ax(t) + v. A condition on v for the system to
converge to an equilibrium point can be identified (entries
of v adds to zero.). Note that the algorithm depicted in Fig.
1 cannot be applied to remove the faulty node for such a
system with a non-zero input. The reason is that if one ap-
plies the algorithm depicted in Fig. 1 after locating the faulty
node, v loses one element and the entries of v do not add
up to zero anymore, which will drive the system to insta-
bility. To remedy this issue, we modify the aforementioned
algorithm to deal with removal of the faulty node in such
systems, and replace v` (` ∈ Nk) by v` +

vk

|Nk |
after removing

the faulty node k to ensure convergence to an equilibrium.

5 Application to Practical Examples

In this section we consider the problem of fault detection
and isolation in two practical problems. First we consider
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detection and isolation of fault in power networks and then
we consider the same problem in a formation of mobile
nodes with double integrator dynamics.

5.1 FDI in Power Networks

In what follows we propose a fault detection and isolation
scheme for a power system akin to the one presented earlier.
We assume that all the buses in the network are connected to
synchronous machines (motors or generators). The behavior
of a synchronous electrical motor located in bus i can be
described by the so-called swing equation:

miδ̈i(t) + diδ̇i(t) − Pmi(t) = −
∑
j∈Ni

Pi j(t), (24)

where δi is the phase angle of bus i, mi and di are the inertia
and damping coefficients, respectively, Pmi is the mechanical
input power and Pi j is the active power flow from bus i to j.
For more information on the origins of (24) and the reason
it is used to describe both load (transmission) buses and
generator buses see [11]. Considering that there are no power
losses nor ground admittances and letting Vi = |Vi| e jδi be
the complex voltage of bus i, the active power flow between
bus i and bus j, Pi j, is given by:

Pi j(t) = ki j sin(δi(t) − δ j(t)) (25)

where ki j = |Vi|
∣∣∣V j

∣∣∣ bi j and bi j is the susceptance of the
power line connecting buses i and j.

Since the phase angles are close, we can linearize (25),
rewriting the dynamics of bus i as:

miδ̈i(t) + diδ̇i(t) = −
∑
j∈Ni

ki j(δi(t) − δ j(t)) + Pmi. (26)

Consider a power network with G(V,E) as its underlying
graph with N = |V| nodes, where each node corresponds to a
bus in the power network. Rewriting (26) in state-state form
and considering x =

[
δ1(t), · · · , δN(t), δ̇1(t), · · · , δ̇N(t)

]>
and v(t) = [Pm1 · · · PmN]>, we have

ẋ(t) = Ax(t) + Bv(t), (27)

where A =

 0N IN

−M̄L −M̄D̄

, B =
[
0N M̄

]>
, M̄ =

diag
(

1
m1

, · · · ,
1

mN

)
, D̄ = diag (d1, · · · , dN).

Consider that the network is being affected by faults corre-
sponding to unexpected changes in the power generation or
consumption. Assume that a fault has occurred at node k.

G1

G2

G4

G3

Bus 1

Bus 2 Bus 3

Bus 4

Bus 5

Bus 6

Bus 7 Bus 8 Bus 9

60,000
MVA

1,300
MVA

70,000
MVA

4,400
MVA

Fig. 2. Power network with 9 buses [3].

The power network under such conditions can be modeled
as

ẋ(t) = Ax(t) + Bv(t) + bk
f fk, (28)

where bk
f is the k-th column of B and therefore it can be

written as bk
f =

[
01×N b̄k>

f

]>
with b̄k>

f being a column vector
with 1

mk
in the k-th entry and zero in all other entries. Thus,

from Theorem 3 there exists a UIO for such system at a
given node i if k ∈ Ni and yi = Cix with

Ci =

 C̄i 0|Ñi |×N

0|Ñi |×N C̄i

 . (29)

Thus we need to measure the phase and frequency of the
neighbors to be able to detect the faulty node. These mea-
surements are readily available through phase measurement
units (PMU). Having such measurements, this type of faults
can be detected and isolated in a distributed way using UIOs.
Remark 5. Because of Theorem 2 we know that we cannot
solve the fault detection problem using UIO with having
access to less information than the information available
through yi = Cix, with the above-mentioned Ci.
Remark 6. In the case where there are buses that are not
connected to synchronous machines and are described by
algebraic equations; one has two alternatives. First, one can
use equation (24) to model only the buses that are connected
to synchronous machines and use the techniques in [13],
Chapter 14, to remove the algebraic relations from the power
network model and assume that the faults only affect the
buses connected to synchronous machines. Second, one may
assume that the buses that are not connected to the machines
are governed by dynamic equations of type (24), albeit with
small damping and inertia coefficients [11].

Consider the power network presented in Fig. 2. The power
grid’s topological parameters and the generators’ dynamic
coefficients (mi and di) were taken from [3], while the dy-
namic coefficients of the rest of the buses were arbitrarily
taken from reasonable values.

The power network is evolving towards the steady-state
when, at time instant t = 2s, a fault occurs at node 6, as
presented in Fig. 3(a). By implementing a bank of observers
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Fig. 3. FDI in a Power Network: (a) Phase angles of the power
network. (b) Residuals of buses neighboring bus 7.

at bus 7, the fault is successfully detected and isolated in
the presence of process and measurement noise, since the
residual corresponding to bus 6 became larger than the other
residuals, as illustrated in Fig. 3(b).

5.2 FDI in Formations of Mobile Agents

In this section adopt the system and the notations introduced
in Section 4.2. Furthermore, assume at time t f a fault oc-
curs at node k, one can detect and isolate this fault using
the methods introduced earlier.Consider a formation consist-
ing of 10 nodes with double integrator dynamics with the
aforementioned control law as depicted in Fig. 4(a). Further
assume at time t f = 2 node 3 starts to malfunction. Using
UIOs and the logic presented in (13) this fault is detected at
time td = 3.56. A sample of residuals as calculated in node 1
(neighbouring node 3) is presented in Fig. 4(b). In the case
where no isolation is carried out the first coordinate of the
velocities of the nodes are presented in Fig. 4(c). However,
if after the detection of the fault, the aforementioned algo-

rithm is used to remove the faulty node, the first coordinate
velocities of the nodes would be as the ones depicted in Fig.
4(d). Which shows that they have reached consensus. Due
to absence of any external input it is not needed to adjust
external input after disconnection.

5.3 Complexity of the FDI Method

For implementation of the method introduced in this paper, at
each node it is required to have one observer corresponding
to each of the neighbours. Each of these observers have 2N
states. So at each node i, 2N |Ni| states are estimated, which
puts a heavy computational burden on each of the nodes as
N increases. In particular, the example in Section 5.1 with
9 nodes required node 7 to have 3 observers with 18 states
each, corresponding to 54 states for the observer bank. As
for the example in Section 5.2 with 10 nodes the observer
bank in node 1, having 5 neighbors, would require a total of
100 states.

However, we note that it is not required to (i) estimate all
the states in the system at each observer, and (ii) it is not
necessary to have observers at all of the nodes. These cases
are discussed in [19].

6 Concluding Remarks and Future Directions

In this paper we considered the problem of fault detection
and isolation in the networks of interconnected nodes with
double integrator dynamics. We proposed a distributed FDI
scheme based on UIOs requiring only local measurements.
Furthermore we analyzed the feasibility of such scheme with
respect to local measurements and we also provided some
infeasibility results. As part of a mitigation procedure, we
proposed an algorithm to remove the faulty node from the
network that can also be applied when there are nonzero ex-
ternal inputs. Then we presented some simulation examples
related to the motivating applications, thus demonstrating
the application of the proposed method to fault detection in
power and multinode systems. Some considerations on the
complexity and scalability of the proposed method were also
given.

Possible future directions include considering a way to re-
duce the dimension of the unknown input observers at each
node in the current scheme, and explore applicability of other
fault detection methods to the problems considered here that
are more robust to the noise.
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