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Abstract: This paper is an endeavour to address the problem of distributed leader selection in a formation
of autonomous agents where the agents do not communicate directly via communication channels. The
algorithm that the agents use to select a leader relies on the agents observing each others’ behaviours.
It is shown that the proposed algorithm is terminated, on average, in finite number of step and results
in the selection of a leader for the formation. Moreover, It is established that the algorithm has some
common elements with an algorithm widely used in data networks, i.e. Slotted Aloha. The application
of the algorithm to a formation controlled by a nonlinear control law is studied and some numerical
examples are presented to show the general performance of the algorithm.

Keywords: Distributed Control, Estimation Algorithms, Algorithms, Decentralized Systems,
Co-operation

1. INTRODUCTION

Throughout history studying the behaviour of animals has in-
spired engineers and scientist to devise new techniques and
methodologies to accomplish tasks and solve problems that
were considered to be extremely challenging earlier. In recent
years, a field that was heavily influenced by the knowledge
obtained from observing natural creatures is the field of control
and coordination of multi-agent systems. Due to the attention
that this field has attracted and the knowledge that followed
this spike of attention, more and more engineering problems are
being addressed by the methodologies developed in this field,
and it has proved to be applicable in many areas. To name a few
of the application areas one can mention, sensor deployment
Martınez (2009), distributed averaging and consensus Ren et al.
(2007), motion coordination via flocking behaviours Jadbabaie
et al. (2003); Blondel et al. (2005); Cao et al. (2008); Tanner
et al. (2007), robotics formation motion control and coordi-
nation Desai et al. (2001), clock synchronization in wireless
networks, see Sommer and Wattenhofer (2009).

To accomplish some of the abovementioned tasks it is required
that one agent or a subset of them act as leaders of the group.
By leader we mean an agent that has access to more information
than the other ordinary agents. For example, an agent should act
as reference clock, in clock synchronization (This leader agent
“knows” the global time of the network.) or an agent’s heading
should be considered as the reference heading when the agents
are accomplishing flocking (this agent knows what the desired
direction of motion for the formation is). Such behaviours are
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observable in the animal kingdom as well Couzin et al. (2005),
e.g. the alpha male in a pack of wolves determine where the
pack should head for accomplishing foraging activities, see
Mech (2000). The role and importance of leaders in the multi-
agent systems are well-known as well Wang and Slotine (2006),
and in many scenarios the presence of a leader seems to be
crucial for achieving the desired objective, Tanner et al. (2004).
Since, success in accomplishing task depends on choosing a
leader, one may ask how this leader is being selected in multi-
agent systems. There are two different ways readily available
in the literature to answer this question. The first one is that
the roles of the agents in the system and their relation to the
other agents can be explicitly assigned to each of them, e.g. see
Soukieh et al. (2009). The second way is via a distributed
algorithm known as FLOODMAX, Bullo et al. (2009). While this
second way is distributed, however it assumes that the agents
can easily communicate with each other and pass messages
to other agents in the formation. However, if one revert to
animal kingdom to seek an answer to this question, he may
find that the roles in groups of animals are neither assigned
explicitly nor any voting-like mechanism is involved to choose
a leader. The way that animals accomplish leader selection is
via observing each others’ behaviours, and usually the strongest
one is acknowledged as the dominant member of the group
(leader), King et al. (2009). This paper is an endeavour to
answer the aforementioned problem in the context of multi-
agent formation in a way similar to that of animals.

The outline of this paper is as follows. In the next section
we introduce some assumptions and state the problem that
we address in this paper. In Section 3, we propose a general
algorithm to address the problem posed in Section 2 and we
present some analysis for the proposed algorithm. In Section
4 we address the problem of leader selection via observation
for a special case of inter-agent interaction law. We show the



applicability of the solution in Section 5 via presenting some
simulation results. Concluding remarks come in the end.

2. PROBLEM FORMULATION

Consider a formation of n interconnected nodes and let
G(V,E,A) be the underlying graph of this formation, where
V = {i}n1 is the vertex set with i ∈ V corresponding to node
i, E is the edge set of the graph, and A ∈ Rn×n is the weighted
adjacency matrix with nonnegative entries. The undirected edge
{i, j} ∈ E is incident on vertices i and j if nodes i and j
share a a sensing link, in which case the corresponding entry
in the adjacency matrix Ai j is positive and reflects the edge
weight. The out-degree of node i is deg (i) =

∑
j∈Ni
Ai j, where

Ni = { j ∈ V : {i, j} ∈ E} is the neighborhood set of i. The degree
matrix ∆ (G) ∈ Rn×n is a diagonal matrix defined as

∆i j =

{
deg (i) , i = j
0 , i , j

The weighted Laplacian of G is defined as L(G) = ∆ −A.

In this paper we consider that each agent i is considered to be
a single integrator and is associated with a state variable xi(t)
at time t. We obtain x(t) by stacking xi(t) for all i ∈ {1, · · · , n}.
Moreover for each xi(t) we have

ẋi(t) = Ri(x(t)) (1)
where Ri(.) : Rn → R is a function that relates the evolution
of xi(t) to the other agents in the formation. Usually this
relationship is limited to those x j(t) that j ∈ Ni. Hence, for
all the agents’ states in the formation we can consider the
following general interconnection law

ẋ(t) = R(x(t)) (2)
where R(.) : Rn → Rn, is the interconnection control law
governing the formation. In most cases R(.) is directly related
to L, the Laplacian of the underlying graph of the formation.
An example for R(.) can be seen in the well-known consensus
protocol:

ẋ(t) = −Lx(t). (3)
Definition 1 (Leader Action & Set of Admissible Leader Ac-
tions). We say agent i is performing a leader action after time
τ̄i iff

ẋi(t) = Ri(x(t)) + ψi(t)`i(t) (4)
where Ri(x(t)) is the i-th entry of R(x(t)),

`i(t) =

{
fi(t) t ≥ τ̄i
0 otherwise, (5)

where fi(t) ∈ F is a real scalar function, ‖ f j(t)‖ < M, ‖.‖
denotes the Euclidian norm, and ψi(t) is a Boolean variable,
which is equal to 1 if agent i can bid for leadership, and it is
equal to 0 if it cannot. Moreover, we callF the set of admissible
leader actions.
Definition 2 (Leader Signature). We call fi(t) the leader signa-
ture of agent i.
Assumption 1. There exists no pair (i, j) with the same leader
signature.

Furthermore, we have the following assumption for what each
agent measures.
Assumption 2 (Agent Measurements). Each agent i measures

yi(t) = Cix(t) (6)
where Ci is a full row rank fat matrix with |Ni| rows and each
row has all zero entries except a 1 at the j-th entry if {i, j} ∈ E.

Remark 1. The definition of F depends on R(.) and all Ci
and should be defined independently for different R(.) and
considering all different Ci. We present an example for the
conditions on F later.

Now consider the following system
ẋ(t) = R(x(t)) + ψ`(t) (7)

where ψ = diag(ψ1, · · · , ψn), and `(t) is obtained by stacking all
`i(t) respectively. Term a formation with a leader, ψ-formation.
We have the following definition for this formation.
Definition 3 (ψ-formation). A ψ-formation is a formation
where all the entries of ψ is zero except for exactly one equal to
1 diagonal entry. This definition is equal to the case where only
one agents is able to take a leader action.

Now we propose the problem we address in this section.
Problem 1 (Distributed Leader Selection). Consider a forma-
tion of n agents under the interconnection law (2) and with mea-
surements of the form (6). How can a leader be chosen without
having neither explicitly assignment of the roles to the agents
nor direct communication between the agents, or equivalently
how can the formation transformed into a ψ-formation?

3. PROPOSED ALGORITHM

A concept that we want to take advantage of in addressing
Problem 1 is to propose an algorithm in which the agents which
are able to bid for leadership are both greedy and reasonable
simultaneously. We formalize these concepts in what follows.
Definition 4 (Agents Able to Bid for Leadership). An agent is
able to bid for leadership if ψi(t) = 1. Otherwise it is not able
and will not bid for leadership.
Definition 5 (Greedy Agent). An agent is greedy in the context
of this paper, if it wants to bid for leadership itself.
Definition 6 (Reasonable Agent). An agent is reasonable in the
context of this paper, if (i) it realizes that if other agents bid for
leadership prior to itself, it will not bid for leadership again,
and (ii) if this agent and some other ones bid for leadership
simultaneously, it will stop bidding for a bounded and random
period of time and possibly bid again.

In order for the agents to act reasonably they need to be able to
see if other agents are taking leadership actions. To this end we
assume that each agent estimates the states of the other agents
in the formation using the local measurements (6). Moreover,
since each agent is assumed to be greedy, it wants to be the
leader. Hence, the model that each of the agents has for the
formation is a model that indicates itself as the leader, in other
words, each agent i considers system to be

ẋ(t) = R(x(t)) + φi(t) (8)
where φi(t) = biψi(t)`i(t), bi ∈ R

n is a vector with all zero
entries except for a 1 at the i-th entry. For this system, agent
i computes an estimate of the states, x̂i(t):

˙̂xi(t) = R̂i(x̂i(t), yi(t)) + φi(t). (9)
This estimator gives rise to an error dynamics

ėi(t) = S i(ei(t), φi(t), yi(t)) (10)
where ei(t) = x(t) − x̂i(t). If the state estimators are designed
in a way that the estimate values converge to the real values
exponentially, ei(t) goes to zero exponentially as well. Now,
consider the case where there are two agents i and j, that are
taking leadership actions. In this case, the estimate errors ei(t)
and e j(t) do not go to zero anymore. The error dynamics at
agent i becomes



ėi(t) = S i(ei(t), φi(t), yi(t)) + Ei(t) (11)
where Ei(t) is a vector of zero entries except for at least one
nonzero entry at the j-th entry ( j , i) where Ei

j(t) = f j(t).
Hence, we have ‖Ei(t)‖ ≤ M where ‖.‖ denotes the Euclidian
norm. Of course the worst bound happens when Ei(t) has all
nonzero entries except the i-th one, and for this worst case,
there is a time ti, after which there exists an εi ∈ R>0 such
that ‖ei(t)‖ ≤ εi(n − 1)M, see Khalil and Grizzle (1996) for
more detail. The agents can use the magnitude of error that
they observe as an indication that there is at least one other
agent in the formation bidding for leadership. We borrow a
term from fault detection literature and name this error between
the measured states and the estimated states, the measurement
residual of the observer and we define it as

ri(t) = Ciei(t) (12)
This idea is the corner stone of the algorithm that is proposed
here to answer Problem 1. However, before introducing the
algorithm we need to introduce some new definitions
Definition 7 (Error Minimum Rise Time). Call the solution to

max
i

min
∀Ei(t)

θi

s.t.
1
θi

θi∫
0

‖ri(t)‖dt > δ

Ei
i(t) = 0
‖Ei(t)‖ ≤ M
ei(0) = 0

(13)

for some positive δ, the error minimum rise time and denote it
by θ?.

.
Definition 8 (Error Maximum Settling Time). Call the solution
to

max
i

min
∀ei(0)

θi

s.t.
1
θi

θi∫
0

‖ri(t)‖dt < δ

Ei(t) = 0
‖ei(0)‖ = εi(n − 1)M

(14)

for some positive δ, the error maximum settling time and denote
it by θ̄?.
Definition 9 (Rise-Settle Time). Call T = dmax{θ̄?, θ?}e the
rise-settle time.

We describe θ? and θ̄? in a more intuitive way in what follows.
The time it takes for all the agents in the system “sense” the
effect of a perturbation in their system model, and consequently
see a difference in the measured signal and the estimated signal
is θ?. And the time that it takes for all the observer errors to
become less than a threshold in average with an “large” initial
value for the error is θ̄?. Since, we want the agents to observe
the behaviour of the system after the transient behaviours are
settled we assume that measurement is carried out over a
maximum time period of T .

Now we are ready to propose Algorithm 1 to address Problem
1, and each agent i has a copy of the algorithm. The basic idea
in this algorithm is that each agent either carries out an action
or makes a decision at the beginning of certain time intervals,
or “time slots”. These length time slots are selected in a way
to allow for the agents observers to observe the states of the

system after a transient time. We choose the length of the time
slots to be 2T .

At time t = 0, each agent i chooses a random uniformly
distributed integer number between 1 and N ∈ Z≥0, t̃i, this
number is the number of the time slot that it waits until at
the beginning of which the agent starts carrying out a leader
action, i.e. τ̄i = 2t̃iT , in case it had not detected any other
leader action during the previous time slot. If at the beginning
of the next time slot, any of the agents detect an average error
in their observers during the last T seconds they stop bidding
for leadership from that time on. However if the error is sensed
at the end of a time slot in which the agent was carrying out the
leader action, this agent stops the leader action for a random
period of time (τ̄i is modified to reflect this idle time through
choosing a new t̃i), or “waits”, and if till this time it does not
detect any other leader action in the formation it starts acting as
a leader again, otherwise it will stop any future leadership bids
as before. This process continues until an agent remains as the
only agent capable of bidding for leadership. We say agent i is
selected as a leader if its Leaderi flag is equal to 1.

Algorithm 1 Distributed Leader Selection at Agent i
initialize:
t̃i ∈ {1, · · · ,N} ⊂ Z /* A random integer number with
uniform distribution */
τi B t̃i
Leaderi B 0
do Bid for Leadership loop
τ̄i B 2τiT
if t mod 2T = 0 then

if t ≤ 2τiT and
1
T

t∫
t−2T
‖ri(θ)‖ dθ > δ then

ψi(t) B 0
end if
if 2τiT < t ≤ 2(τi + 1)T and ψi(t) = 1 and
1
T

2τiT∫
(2τi−1)T

‖ri(θ)‖ dθ > δ then

t̃i ∈ {1, · · · ,N} ⊂ Z
τi B τi + t̃i

end if
if t ≥ 2(τi + 1)T and ψi(t) = 1 then

Leaderi B 1
end if

end if
if Leaderi = 1 or ψi(t) = 0 then

return
end if
end loop

Remark 2 (Favouring the Highly Connected Agents). Intu-
itively it is better to have the leader connected to as many
agents as possible. Hence, one can introduce different distri-
butions for the random number generator in order to produce
smaller waiting times for the agents with high connectivity. For

example, t̃i can be chosen from the set {1, · · · , 1 + d
N

deg(i)
e}.

3.1 Calculating an Upper Bound for T

Consider a formation of n agents, one expects that the large T
occurs when the underlying graph of the formation is weakly
connected. Among all the connected graphs, a line graph has



the weakest connectivity. Now if we construct a line graph T
and put agents 1 and n at both ends of it. A motion generated
in 1 takes the longest time to change the observer error average
over time. The time that this average is larger than δ can be
considered as θ?. Now at the moment that it happens if the
output of the agent goes to zero, the time that takes for the error
average to go under δ gives us an estimate of θ̄?. And so we can
estimate T as the ceiling of the maximum of these two values.

3.2 Comparison with Slotted ALOHA

In this section we compare this algorithm to an algorithm
used commonly in data networks, namely Slotted ALOHA.
Slotted Aloha is used to provide a packet collision avoidance
mechanism in data transmission, and it is simple to describe.
The idea is that each station in the network sends a data packet
in the beginning of prescribed time frames, called time slots, to
another station in the network. If the transmitted packet collides
with other data packets in the network, then the station that has
sent the packet waits for a randomly generated number of time
slots and retransmit again with this waiting time has elapsed
Ghez et al. (1988).

One can make an analogy between the algorithm introduced
here and the Slotted ALOHA. If the leader action is considered
to be a data packet, taking this action is considered transmis-
sion, and the concurrent leader action by different agents is
considered collision, the algorithm proposed here aim to make
sure that one and only one packet is delivered without colli-
sion. However, there are some important differences between
Slotted Aloha and the distributed leader selection algorithm
proposed here. The most important difference is that in the
leader selection algorithm if at any given time a leader is se-
lected (the “packet” is delivered by any of the agents); the rest
of the agents stop bidding for leadership (the rest would stop
“transmission”) indefinitely.

3.3 Average Number of Steps Before the Termination of the
Algorithm

We consider the state in Markov chain where only one agent
remains able to bid for leadership as the termination state. Thus,
if the system enters this state, with probability 1 it will remain
in this state. Such state is called absorbing. We define n different
states, and each state i ∈ {1, · · · , n} is associated with the state
where i agents can bid for leadership. The transition between a
state i to j is possible with probability pi, j only if j < i. Hence,
for i < j, pi, j = 0, for j < i we have

pi, j =

(
i
j

)
p j(1 − p)i− j, (15)

where p = 1/N, while for i = j we have

pi,i = 1 −
i−1∑
j=1

(
i
j

)
p j(1 − p)i− j. (16)

Defining these probabilities and states enable us to put the states
that the system transitions between as a Markov chain. This
chain is depicted in Fig. 1.

Define matrix P, with entries pi j, as the state transition matrix
of an absorbing Markov chain with state transition probability
of pi, j. Putting the transition matrix into canonical form we have

nstart n − 1 2

1

pn,n−1

pn,1

pn,2

pn,n pn−1,n−1

pn−1,2

Intermediate States

p2,1

p2,2

1

pn−1,1

Fig. 1. The Markov chain corresponding to the states that the
system goes through under Distributed Leader Selection
Algorithm.

Pc =



1 − 2p(1 − p) 0 . . . 2p(1 − p)
...

...
. . .

...(
n
2

)
p2(1 − p)n−2 . . . . . . np(1 − p)n−1

0 . . . . . . 1


=

[
Q W

01×n−1 1

]
(17)

where Pc is canonical form of P. From Grinstead and Snell
(1997) we have the following result.
Proposition 1 (Time to Absorption). Let t̄i be the expected
number of steps before the chain is absorbed, given that the
chain starts in state i, and let t̄ be the column vector whose ith
entry is t̄i. Then

t̄ = (I − Q)−11, (18)
where I is the identity matrix and 1 is a column vector of
appropriate dimension with all entries of 1.

Algorithm 1 is terminated (on average) in the same steps
as the abovementioned Markov chain is absorbed. The entry
t̄i is the average value for steps until termination when the
chain is initialized at state i. Hence on average Algorithm 1
is terminated in finite steps, and as the number of steps goes to
infinity the termination probability of the algorithm goes to 1 as
well.

For example the average number of steps for Algorithm 1 for a
formation of n = 10 agents, with N = 10 to have a leader from
the initial 10 potential leaders is 25 steps.
Remark 3. One might implement the algorithm letting only
a subset of the agents bid for leadership, rather than all of
them. A possible scenario that this may be desirable is; to
replace a dysfunctional leader and letting only the neighbours
of the previous leader to bid for leadership. One can choose the
number of the agents in this subset based on the entries of t̄.

4. LEADER SELECTION IN FORMATIONS WITH
NONLINEAR CONSENSUS LAW

Consider a formation of n single integrators under the following
consensus law which is based on the tracking consensus law
proposed in Cao and Ren (2010)

ẋ(t) = −Lx(t) − β sgn (Lx(t)) (19)



where β ∈ R>0. To address Problem 1, we first need to construct
an observer for this system.

For each agent i we have the following system model
ẋ(t) = −Lx(t) − β sgn (Lx) + φi(t)
yi(t) = Cix(t).

(20)

where φi(t) = biψi(t)`i(t), and sgn(.) operator is considered to
be a vector version of ordinary scalar sgn(.) operator. We can
rewrite the system as

ẋ(t) = Ax(t) + Gρ (Ax(t)) + φi(t)
yi(t) = Cix(t),

(21)

where A = −L, G = β, and ρ(.) = sgn(.).

From Arcak and Kokotovic (2001); Fan and Arcak (2003) we
know that we can construct an observer for this system where
ρ(.) should satisfy the following assumption.
Assumption 3. The function ρ(v) satisfies the monotonicity
property ∀v ∈ Rn iff

∂ρ

∂v
+

(
∂ρ

∂v

)>
≥ 0. (22)

The observer is given by

x̂i(t) = Ax̂i(t) + Li(Ci x̂i(t) − yi(t))
+ βρ(Ax̂i(t) + Ki(Ci x̂i(t) − yi(t))) + φi(t)

(23)

Moreover, we know that the error associated with this observer
goes to zero if the following linear matrix inequality (LMI) has
a solution for Pi > 0, κi > 0, Ki, and Li.[

(A + LiCi)>Pi + Pi(A + LiCi) + κiI βPi + (A + KiCi)>

βPi + (A + KiCi) 0

]
≤ 0

(24)
For the error dynamics we have

ėi(t) = (A + LiCi)ei(t)

+ β
(
sgn (Ax(t)) − sgn

(
Ax̂i(t) + Ki(Ci x̂i(t) − yi(t))

)) (25)

Consequently for the residual of the observer at agent i we have

ṙi(t) = CiLiri(t) + CiAei(t)

+ βCi

(
sgn (Ax(t)) − sgn

(
Ax̂i(t) + Ki(Ci x̂i(t) − yi(t))

))
(26)

Under (19) for the set of admissible leader action, F we have:
Definition 10 (Set of Admissible Leader Actions for (19)). The
set F is defined as the set of all scalar functions such that for
any f j(t) ∈ F , all Ci, and for almost all t and ∀i, j ∈ {1, · · · , n}
there exists a positive number c1 such that

0 < ‖µi j(t)‖2 ≤ c1 (27)
where
µi j(t) = CiAei(t)

+ βCi

(
sgn (Ax(t)) − sgn

(
Ax̂i(t) + Ki(Ci x̂i(t) − yi(t)

))
Before showing that such observer exists for the system de-
scribed by (21) we present the following two lemmas whose
proofs are omitted for brevity.
Lemma 1 (Rank of Laplacian Principal Submatrices). If an
undirected graph G is connected, then any principal submatrix
of its Laplacian matrix L, induced by a strict subset of nodes
V̄ ⊂ V , is invertible.
Lemma 2. Consider L ∈ Rn×n to be a Laplacian matrix
associated with a connected graph. Further define X ≥ 0 to

be a matrix of the same dimension as L where all the entries
are 0 except for possibly its diagonal entries. Moreover it is
assumed that at least a diagonal entry of X is equal to 1. Then
for any λ > 0, Lλ = L + λX is positive definite.
Lemma 3 (LMI Feasibility). There exist Pi = P>i > 0, κi > 0,
Ki and Li of appropriate dimensions such that (24) holds.

Proof. This problems is equivalent to
βPi + (A + KiCi) = 0

(A + LiCi)>Pi + Pi(Ai + LiCi) < 0
(28)

We claim that Li = Ki = λC>i and Pi = −(A + λC>i Ci)/β satisfy
these equations, where λ ∈ R<0. To check this claim, first notice
that A = −L, hence Pi = (L − λC>i Ci)/β. From Lemma 2
we know that then Pi is strictly positive. Furthermore for the
second inequality we have

−P>i Pi + PiP>i = −2(Pi)2 < 0. (29)

This shows that the LMI is feasible. �

The next theorem establishes that the observer error described
by (25) goes to zero exponentially fast for system (21), if no
other agents take a leader action.
Theorem 1 (The Exponential Stability of the Nonlinear Ob-
server). The observer error, ei(t) described by (25) goes to zero
exponentially fast for system (21).

Proof. We know from Fan and Arcak (2003) that if Assumption
3 is satisfied and LMI (24) is feasible then the error dynamics
(25) is exponentially stable. To check the former note that sgn(.)
is non-decreasing and hence the Assumption is satisfied and
Lemma 3 shows that the latter holds as well. �

Now since we can construct observers at each agent with the
local information available to that agent to monitor the states of
the network, we can detect if the observer output error does not
go to zero as well, and in average being larger than a threshold
δ ∈ R>0. Thus, we can apply Algorithm 1 to select a leader
in the formation under control law (19). In the next section we
present some simulation results showing the performance of of
Algorithm 1 for selecting a leader in the formations controlled
by (19).

5. SIMULATIONS

In this section we consider a leader selection scenario for the
nonlinear consensus protocol introduced by (19).

In the first scenario consider a formation of n = 10 agents
with leader signature fi(t) = 40i sin(2it), Li = Ki = −20C>i Ci
(i ∈ {1, · · · , n}), and N = 5. Moreover, T is considered to be
2 sec and hence the time slot is 4 sec. The process of leader
selection is depicted in Fig. 2.

In the second scenario we aim to present the motion of the
agents when they run the leader selection algorithm. We con-
sider again a formation of n = 10 agents with leader signature
fi(t) = 40i sin(2it), Li = Ki = −20C>i Ci (i ∈ {1, · · · , n}), N = 5,
and T = 2 sec. The formation at time t = 0 is depicted in Fig
3(a) and the motion of the agents x coordinates is presented in
Fig 3(b).



(a) Agents at time t =

0
(b) Agents at time t =

4
(c) Agents at time t =

8

(d) Agents at time t =

12
(e) Agents at time t =

16

Fig. 2. The underlying graph of the formation. The numbers
on the circles denote the agents labels, and the smaller
ones outside the circles are the time they will take their
corresponding leader action.
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Fig. 3. The motion of the agents throughout the leader selection
process in the second scenario.

6. CONCLUDING REMARKS AND FUTURE
DIRECTIONS

In this paper we proposed an algorithm for leader selection
in multi-agent formations. The algorithm requires only local
measurements and a knowledge of the structure of the un-
derlying graph of the formation at each agent. The algorithm
relies on existence of state observers at each agent that can
estimate the states of other agents in the formation, and on a
suitable set of admissible leader actions. We have shown that
such observers exist for a nonlinear interaction law. We further
demonstrated the applicability of the algorithm via simulation
results. A future research problem is to consider directed fixed
and/or switching topologies.
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