
Agents Misbehaving in a Network: a Vice or a Virtue?

Iman Shames, André M. H. Teixeira, Henrik Sandberg, Karl H. Johansson

Abstract— Misbehaviours among the agents in a network
might be intentional or unintentional, they might cause a
system-wide failure or they might improve the performance
or even enable us to achieve an objective. In this article we
consider examples of these possible scenarios. First, we argue
the necessity of monitoring the agents in a network to detect if
they are misbehaving or not and outline a distributed method
in which each agent monitors its neighbours for any sign
of misbehaviour. Later, we focus on solving the problem of
distributed leader selection via forcing the agents to temporarily
misbehave, and introduce an algorithm that enables the agents
in a network to select their leader without any interference
from the outside of the network.

I. INTRODUCTION

Recent years have witnessed a more pronounced presence
of robotic networks in our day-to-day life. Naturally, as the
domain of activity of these systems gets closer to our daily
life one cannot ignore the possibility of a scenario similar
to the one described by Isaac Asimov in his masterpiece,
“I, Robot”, and stop wondering what might happen if these
metallic servants stop following the rules they are supposed
to follow and express new behaviours, that possibly can be
labelled as misbehaviours1?

The answer to this question is not straightforward. Con-
sider the scenario depicted in Fig. 1 where the robot R1, as
a member of a group of networked robots, has the goal to
carry the cargo from point A (blue circle) to point B (red
circle) such that the time spent is minimized. This is done via
running a simple graph search algorithm on the environment
map uploaded to the memory of R1. The path for all the
robots is depicted in Fig. 1a. However, due to different
factors, such as minimum turning radius, narrowness of the
passage, congestion, etc., this path does not correspond to
an optimum path when the overall time used by each of the
robots is taken into account. In this scenario, after a time
R1 modifies its path as depicted in Fig. 1b which does not
clearly correspond to a minimum time path and is against
the original programming of R1. This misbehaviour results
in an improved performance, for example because R1 does
not contribute to the congestion and hence it helps both itself
and the other robots to achieve their tasks in a more timely
manner. Now, consider the other case depicted in Fig. 2.
In this scenario a group of robots are supposed to move
in unison with equal velocities from the left side of the

The authors are with ACCESS Linnaeus Centre, Electrical
Engineering, Royal Institute of Technology, Stockholm, Sweden.
{imansh,andretei,hsan,kallej}@kth.se

1 In this paper we use the word “misbehaviour” in an objective sense.
Any behaviour exhibited by a machine that is not taken into account at the
time of programming, regardless of its favourable or unfavourable outcome,
is considered to be a misbehaviour.

environment to the right side while forming a desired shape.
Fig. 2a depicts the case where they achieve this objective and
agree on a common velocity to achieve the task. However,
Fig. 2b demonstrates another situation where one of the
robots does not follow the rule to reach the agreement on
the velocity and consequently inhibits the group to maintain
its desired shape and as a result fails to achieve its objective.

(a)

(b)

Fig. 1. (a) All the agents behave according to their predefined program-
ming, following a minimum distance yet congested path. (b) One of the
agents takes a longer trajectory that in the end improves the performance
of the overall system by reducing congestion, thus decreasing the total time
required for the task.

As it can be seen from the examples presented above,
while an agent misbehaving in a network does not necessarily
result in catastrophe, one cannot discard the importance of
the detection of the situations where an agent is misbehaving,

0 5 10 15 20 25 30
−1

0

1

2

3

4

5

X

Y
Agents Trajectories

Agent 1
Agent 2
Agent 3
Agent 4
Agent 5

(a)

0 5 10 15 20 25 30
−2

0

2

4

6

8

10

12

14

X

Y

Agents Trajectories in the Presence of a Misbehaving Agent

Agent 1
Agent 2
Agent 3
Agent 4
Agent 5

(b)

Fig. 2. (a) Agents Trajectories While Moving in a Formation. (b) Agents
Trajectories While Moving in a Formation in the Presence of a Misbehaving
Agent.

that is, not following the original programming and the rules
that were defined for it. Moreover, putting aside the fact
that a misbehaviour may result in mayhem or just improve
the efficiency of the system, we advocate that in particular
scenarios certain objectives can be achieved if agents do
misbehave.

Specifically, in this article we first argue how it is pos-
sible to design a distributed mechanism for the agents to
monitor and be monitored by their neighbours for possible
misbehaviours to prevent undesirable outcomes. These are
the scenarios where a misbehaviour is potentially a vice.
Later, we look at a scenario where certain misbehaviours are
in fact encouraged among the agents to be able to achieve a
distributed task. The virtuous nature of such misbehaviours
will be more apparent later.

II. AGENTS AND NETWORKS MODEL

Throughout this paper, instead of machines or robots we
use the more generic term agent. An agent can be a mobile
robot moving around in an environment or any other piece of
electric machinery, e.g., a power generator in a power grid.
We assume that we deal with N agents that are labeled from
1 to N . Moreover, we assume each of the agents is associated
with a set of states. These states can be the position of the
agent in the case of it being a mobile robot, or its phase,
in the case where it is a generator. Let xi ∈ Rn denote
the state of agent i. We further assume that the interaction
among the agents can be modelled via a network, and this
network in turn can be modelled with a graph G with vertex
set V = {1, . . . , N} and the edge set E where the edge {i, j}
is in E if agents i and j directly interact. We call each agent
j that interacts directly with agent i one of its neighbours,
and we denote the set of all of the neighbours of i by Ni.
More precisely, we assume that the state of i evolves under
the following equation

ẋi(t) = Ri(xi(t),xi1(t), . . . ,xi|Ni|
(t))

= Ri(yi(t))
(1)

where ij ∈ Ni, and yi(t) is all the measurements available
to an agent i from itself and its neighbours. As a result the
whole network can be described by

ẋ(t) = R(x(t)) (2)

where x(t) = [x>1 (t), . . . ,x>N (t)]> and R(·) =
[R>1 (·), . . . ,R>N (·)]>.

III. DETECTING MISBEHAVING AGENTS

Several technical applications such as transport systems
and industrial processes have strict safety and reliability
requirements. Modes of operation not satisfying these re-
quirements may cause great damage to both the process
and its surroundings. Monitoring the operating conditions
through fault detection and isolation (FDI) is of utmost
importance and there exists a vast collection of methods to
perform failure diagnosis. Model-based fault diagnosis is a
class of methods that is of particular interest for dynamical
systems. One such method, observer-based FDI, is the focus
of this section.

Most of the available literature on model-based FDI focus
on centralized systems where the FDI scheme has access to
all the available measurements and the objective is to detect
and isolate faults occurring in any part of the system [1].

Some recent work has been done on the design of dis-
tributed FDI scheme. In [2], a bank of decentralized ob-
servers is built where each observer contains the model of the
entire system and receives both measurements from the local
subsystem and information transmitted from other observers.
A similar approach is taken in [3] where the observers
communicate with each other, but they only possess models
of their respective local subsystems. A mixing procedure
is used to reconstruct the state of the overall system from
the local estimates. Recently distributed FDI schemes for a

network of linear time invariant interconnected systems were
considered [4], [5].

Power networks can be viewed as large-scale and spa-
tially distributed systems. Being a critical infrastructure, they
possess strict safety and reliability constraints. Monitoring
the state of the system is essential to guarantee safety and
currently this is typically done in a centralized control center
through a single state estimator. Due to the low sampling fre-
quency of the sensors in these system a steady state approach
is taken. These methods only allow for an over-determined
system to ensure reliability. Furthermore, faults, traditionally,
are handled mainly by central bad data detection schemes,
see [6], and until recently the transient states of the system
has not been taken into account for detecting anomalies. In
recent years, measurement units with higher sampling rate
have been developed, opening the way to dynamic state
estimators and observer-based fault detection schemes taking
in account the dynamics of the system. Some centralized
FDI schemes have been proposed in the recent literature,
see [7]. However, to the best of knowledge of the authors,
other than the result in [5], no other distributed method has
been proposed to carry out FDI in power networks, despite
the inherent decentralized nature of such networks.

Control and coordination of formations of autonomous
robots is another application area that requires distributed
fault detection and isolation methods. The decentralized
nature of these systems have rendered them highly favorable
to accomplish some tasks in an efficient manner. One of
the most studied tasks is to make all the nodes to reach a
common point, so called, consensus. The consensus variable
can be the physical positions of the nodes, their headings,
or the relative clock biases between each pair of nodes. The
interaction law that ensures the achievement of consensus is
often called a consensus protocol or a consensus algorithm.
Most of the distributed coordination control laws proposed in
the literature, such as the consensus protocols, are not robust,
in the sense that a single node failing to update its values
according to the law leads to that none of the nodes are
reaching the consensus in the original sense. It is imperative
to either have algorithms that are robust to the effects of
possible malfunctions in the system or have monitoring
schemes to observe the behavior of each node in the system
and detect if any of them are not following the protocol.
Since these systems are highly decentralized, the monitoring
should take place in a distributed way. This section focuses
on distributed FDI for a network of interconnected dynamical
systems running a distributed control law that can be seen
as a general form of an inter-agent interaction law. Related
to our contribution, in [8] the notion of robustness in the
systems of interconnected nodes in the presence of faulty
nodes in the network is introduced and formalized.

We start this section by an example. Consider the network
depicted in Fig. 3 where each agent i is governed by an
equation similar to the one given in (1). At a time t0 a fault
occurs at j that is one of the neighbours of i. For the purposes
of this article we consider an agent j to be faulty if its states

Misbehaviour

i

j

Fig. 3. A network with a misbehaving agent.

are not governed by (1) and instead they satisfy

ẋj(t) = Rj(yj(t)) + fj(t) (3)

where fj(t) is a fault signal. We are interested in addressing
the following problem.

Problem 1 (Distributed Fault Detection and Isolation):
How can each agent i in the network detect a fault in the
network and isolate the faulty agent j, if j is a neighbour
of i?

To achieve the fault detection and isolation task, first, we
present the following definition.

Definition 1: A residual rki (t) is a fault indicator function
that is calculated at node i and satisfies

‖rki (t)‖ = 0⇔ ‖fj(t)‖ = 0 ∀j 6= k ∈ Ni.
Now, if agent i can calculate residuals that satisfy the

condition of Definition 1 using only local measurements yi

and R(·), then by applying Algorithm 1 a faulty node j can
be detected by all the nodes in Nj . However, all the other
nodes in the network only detect the existence of a fault
in the network and the exact identity of the faulty node is
unknown to them. For a certain class of networked systems
with a linear R(·) it is shown that such residuals can be
generated using unknown input observers. For more details
see [5].

Remark 1: If a node j is faulty, all the nodes in the
network detect that there exists a faulty node in the network
unless the fault signal happens to coincide with a system
zero. However, only the nodes in the one-hope neighbour-
hood of j can isolate node j as the faulty node in the network.

We conclude this section with an example. Consider the
power network depicted in Fig. 4 as a network of intercon-
nected machines. The power network is evolving towards
the steady-state when, at time instant t = 6s, a fault occurs
at agent (node) 5. By implementing a bank of observers at
agent 7, the fault is successfully detected and isolated, the
residuals calculated at agent 7 are presented in Fig. 5.

Algorithm 1 D-FDI of Faulty Nodes at Node i
for all the agents in the neighbourhood of i do

Generate a residual.
end for
if For one of the neighbours, j, the magnitude of its
corresponding residual is less than a threshold and for
all the rest of the neighbours the corresponding residuals
magnitudes are more than the threshold. then

Node j is faulty.
else if All the residuals associated with the neighbours
are more than a predefined threshold. then

There exists a faulty node in the network that is not a
neighbour of i.

else if All the residuals associated with the neighbours are
less than a predefined threshold. then

There is no faulty node in the network.
end if

G1

G2

G4

G3

Bus 1

Bus 2 Bus 3

Bus 4

Bus 5

Bus 6

Bus 7 Bus 8 Bus 9

60,000
MVA

1,300
MVA

70,000
MVA

4,400
MVA

1

2

5

6

7 8
3

9
4

Fig. 4. A 9 bus power network and its graph representation.

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

t(s)

R
es

id
ua

ls

r
7
5

r
7
6

r
7
8

Fig. 5. The residuals generated at agent (node) 7. Since, r67 and r87 are
much greater than zero and r57 is approximately equal to zero, one can
deduce that agent 5 is faulty.

IV. EMPLOYING MISBEHAVING AGENTS TO SELECT A
LEADER IN A NETWORK

To accomplish some of the tasks in networked systems it
is required that one agent or a subset of them act as leaders
of the group. For example, an agent should act as reference
clock, in clock synchronization (This leader agent “knows”
the global time of the network.), or an agent’s heading
should be considered as the reference heading when the
agents are accomplishing flocking (This agent knows what
the desired direction of motion for the network is.). Such
behaviours are observable in the animal kingdom as well [9],
e.g. the alpha male in a pack of wolves determines where the
pack should head for accomplishing foraging activities, see
[10]. The role and importance of leaders in the multi-agent
systems are well-known as well [11], and in many scenarios
the presence of a leader seems to be crucial for achieving
the desired objective, [12]. Since success in accomplishing
tasks depends on choosing a leader, one may ask how this
leader is being selected in multi-agent systems. There are two
different ways readily available in the literature to answer
this question. The first one is that the roles of the agents
in the system and their relation to the other agents can be
explicitly assigned to each of them. The second way is via
a distributed algorithm known as FLOODMAX, [12]. While
this second way is distributed, it assumes that the agents can
easily communicate with each other and pass messages to
other agents in the network. However, if one revert to animal
kingdom to seek an answer to this question, she may find that
the roles in groups of animals are neither assigned explicitly
nor any voting-like mechanism is involved to choose a
leader. The way that animals accomplish leader selection
is via observing each others’ behaviours, and usually the
strongest one is acknowledged as the dominant member of
the group (leader), [13]. This section is an endeavour to
answer the aforementioned problem in the context of multi-
agent network in a way similar to that of animals. The results
of this paper are based on [14] where the idea of selecting a
leader in a network of dynamical systems was proposed for
the first time.

Enabling a formation of autonomous agents to choose a
leader amongst themselves is very important when one is
interested in designing robust networked systems. Consider
the case where only a subset of robots in a robotic network
have the computational and sensory resources to calculate
a collision free path for the formation of the robots in an
environment. Initially, one of these robots is designated as
the leader and drives the formation along a desired path.
However, halfway, due to a fault or an attack it becomes
incapable of controlling the trajectory of the formation. To
complete the task a leader responsible for trajectory planning
and control should be selected from the remaining “capable”
robots. This can be achieved via the implementation of a
distributed leader selection algorithm akin to that proposed
in this paper. Now we are ready to pose the problem that we
consider in this section.

Problem 2 (Distributed Leader Selection): Consider a

network of N agents under the interconnection law (1).
Moreover, assume that the label of each agent is not known
to the others. How can one and only one leader be selected
without having neither explicitly assignment of the roles to
the agents nor direct communication between the agents?

The basic idea in addressing the aforementioned problem
is that each agent i either bids for leadership or makes a
decision at the beginning of certain time intervals, or “time
slots”. By bidding for leadership or equivalently, taking a
bidding action, we mean that it modifies its local interaction
law to be

ẋi(t) = Ri(yi(t)) + `i(t). (4)

where `i(t) is different from `j(t) for all j 6= i, and is called
agent i leadership action. The lengths of these time slots are
chosen in a way to allow for the agents to observe the states
of the system after a transient time. We consider the time
slots to be of length 2T . During each of the time slots each
agent i generates a residual, ri(t) considering that the only
agent, if any, bidding for leadership is i itself. If at time
t0, that is end of a time slot, ri(t0) = 0, then the agent i
infers that no other agent has bid for leadership for the time
t ∈ [t0 − 2T, t0].

At time t = 0, each potential leader agent i chooses a
random uniformly distributed integer number between 1 and
n̄ ∈ Z≥0, t̃i, corresponding to the number of the time slot
that it waits until, at the beginning of which the agent starts
bidding for leadership, i.e. τ̄i = 2t̃iT , in case it had not
detected any other leadership bid during the previous time
slots. If at the beginning of the next time slot, any of the
agents detect an average error in their observers during the
last T seconds they stop bidding for leadership from that
time on. However if the error is sensed at the end of a
time slot in which the agent was bidding for leadership, this
agent stops the bidding for a random period of time (τ̄i is
modified to reflect this idle time through choosing a new t̃i),
or “waits”, and if it does not detect any other agent bidding
for leadership in the network until the time is elapsed then
it starts bidding for leadership again. Otherwise it will stop
any future leadership bids as before. This process continues
until an agent remains as the only agent capable of bidding
for leadership. This procedure is described in Algorithm 2.

Remark 2: One might implement the algorithm letting
only a subset of the agents bid for leadership, rather than all
of them. A possible scenario that this may be desirable is; to
replace a dysfunctional leader and letting only the neighbours
of the previous leader to bid for leadership.

Comparison with Slotted ALOHA

In this section we compare this algorithm to an algo-
rithm used commonly in data networks, namely Slotted
ALOHA. Slotted Aloha is used to provide a packet collision
avoidance mechanism in data transmission, and it is simple to
describe. The idea is that each station in the network sends
a data packet in the beginning of prescribed time frames,
called time slots, to another station in the network. If the
transmitted packet collides with other data packets in the

Algorithm 2 Distributed Leader Selection
Wait for a random number of time slots t̃i ∈ {1, · · · , n̄};
i is not the leader;
do Bid for Leadership loop
if It is the start of a time slot. then

if any agent has taken a bidding action before i and
waiting time for i is up then

agent i will not be able to bid for leadership; return;
else

agent i starts the bidding action;
end if
if any other agent is taking a bidding action at the same
time as i then

Stop taking bidding action; Wait for a random number
of time slots;

end if
if It has been one time slot since the bidding action of
i and no other agent has taken a bidding action. then
i is the leader; return;

end if
end if
end loop

network, then the station that has sent the packet waits for
a randomly generated number of time slots and retransmits
again when this waiting time has elapsed [15].

One can make an analogy between the algorithm intro-
duced here and the Slotted ALOHA. If the bidding action
is considered to be a data packet, taking this action is
considered transmission, and the concurrent bidding action
by different agents is considered collision, the algorithm
proposed here aims to make sure that one and only one
packet is delivered without collision. However, there are
some important differences between Slotted Aloha and
the distributed leader selection algorithm proposed here. The
most important difference is that in the leader selection
algorithm if at any given time a leader is selected (the
“packet” is delivered by any of the agents); the rest of
the agents stop bidding for leadership (the rest would stop
“transmission”) indefinitely.

We present an example where Algorithm 2 is applied
to address the problem of distributed leader selection as a
conclusion to this section. Consider a network consisting of
N = 10 agents, n̄ = 5, and let T = 2 s. The process of
leader selection is depicted in Fig. 6.

V. CONCLUSIONS

In this article we argued that while a misbehaviour in
a network of interconnected systems does not necessarily
result in a catastrophe, it is important to monitor agents in
a network to detect if they behave in the way that they are
expected to behave. We outlined a method to detect such
misbehaviours in a distributed fashion, and we illustrated
the application of the method to a network of interconnected
electric machines, where each machine monitors those other
ones that are directly connected to it.

(a) Agents at time t = 0 s (b) Agents at time t = 4 s

(c) Agents at time t = 8 s (d) Agents at time t = 12 s

(e) Agents at time t = 16 s

Fig. 6. The underlying graph of the network. The numbers on the circles
denote the agents labels, and the smaller ones outside the circles are the
time at which the agents will take their corresponding bidding action.

Then we contemplated the possibility of accomplishing
certain distributed tasks via making the agent to exhibit
temporary misbehaviours. Specifically, we proposed an al-
gorithm for distributed leader selection in a network of
interconnected agents.

For future research directions the authors recommend two
approaches that can be investigated simultaneously: (i) devel-
oping methods for fault detection and isolation/localization in
distributed networked systems, and (ii) critical misbehaviour
(failure) prevention and design robustness in networked
systems through designing methodologies that are inherently
robust to misbehaviour or incorporating internal fail-safes
that shut down an agent as it detects it has started exhibiting
the first signs of misbehaviour.

ACKNOWLEDGEMENTS

This work was supported in part by the European Com-
mission through the VIKING project, the Swedish Research
Council, the Swedish Foundation for Strategic Research, and
the Knut and Alice Wallenberg Foundation.

REFERENCES

[1] S. X. Ding, Model-based Fault Diagnosis Techniques: Design
Schemes. Springer Verlag, 2008.

[2] S. X. Ding, P. Zhang, C. Chihaia, W. Li, Y. Wang, and E. L. Ding,
“Advanced design scheme for fault tolerant distributed networked
control systems,” in Proceedings of the 17th IFAC World Congress,
Seoul, Korea, July 2008, pp. 13 569 – 13 574.

[3] W. H. Chung, J. L. Speyer, and R. H. Chen, “A decentralized fault
detection filter,” Journal of Dynamic Systems, Measurement, and
Control, vol. 123, no. 2, pp. 237–247, 2001. [Online]. Available:
http://link.aip.org/link/?JDS/123/237/1

[4] F. Pasqualetti, A. Bicchi, and F. Bullo, “Consensus computation in
unreliable networks: A system theoretic approach,” IEEE Transac-
tions on Automatic Control, 2010, to appear, available online at
http://www.fabiopas.it/papers/FP-AB-FB-10a.pdf.

[5] I. Shames, A. Teixeira, H. Sandberg, and K. Johansson, “Distributed
fault detection for interconnected second-order systems,” Automatica,
vol. 47, no. 12, pp. 2757 – 2764, 2011.

[6] E. Handschin, F. Schweppe, J. Kohlas, and A. Fiechter, “Bad data
analysis for power system state estimation,” Power Apparatus and
Systems, IEEE Transactions on, vol. 94, no. 2, pp. 329–337, 1975.

[7] E. Scholtz and B. Lesieutre, “Graphical observer design suitable for
large-scale DAE power systems,” in Proceedings of the IEEE Conf.
on Decision and Control, Cancun, Dec. 2008, pp. 2955–2960.

[8] V. Gupta, C. Langbort, and R. M. Murray, “On the robustness of
distributed algorithms,” in Proc. 45th IEEE Conf. on Decision and
Control, 2006, pp. 3473–3478.

[9] I. D. Couzin, J. Krause, N. R. Franks, and S. A. Levin, “Effective
leadership and decision-making in animal groups on the move,”
Nature, vol. 433, no. 7025, pp. 513–516, 2005.

[10] L. D. Mech, “Leadership in wolf, Canis lupus, packs,” Canadian Field-
Naturalist, vol. 114, no. 2, pp. 259–263, 2000.

[11] W. Wang and J. J. E. Slotine, “A theoretical study of different leader
roles in networks,” IEEE Transactions on Automatic Control, vol. 51,
no. 7, pp. 1156–1161, 2006.

[12] F. Bullo, J. Corts, and S. Martnez, Distributed Control of Robotic
Networks, Series in Applied Mathematics. Princeton, 2009.

[13] A. J. King, D. D. Johnson, and M. V. Vugt, “The origins and evolution
of leadership,” Current Biology, vol. 19, no. 19, pp. R911 – R916,
2009.

[14] I. Shames, A. M. H. Teixeira, H. Sandberg, and K. H. Johansson, “Dis-
tributed leader selection without direct inter-agent communication,” in
2nd IFAC Workshop on Estimation and Control of Networked Systems,
Annecy, France, 2010, pp. 221–226.

[15] S. Ghez, S. Verdu, and S. C. Schwartz, “Stability properties of slotted
Aloha with multipacket reception capability,” IEEE Transactions on
Automatic Control, vol. 33, no. 7, pp. 640–649, 1988.

http://link.aip.org/link/?JDS/123/237/1

	Introduction
	Agents and Networks Model
	Detecting Misbehaving Agents
	Employing Misbehaving Agents To Select a Leader in a Network
	Conclusions
	References

