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Abstract

In this paper we study the problem of fault detection and mitigation in networks where the measure-

ments satisfy Kirchhoff’s voltage law. First, we characterise the class of faults appearing as an additive

fault vector (injected by a malicious adversary or due to equipment failures) that can be detected by

taking into account the topology of the network. Second, we consider the problem of estimating the fault

vector via tools from compressive sensing. Moreover, we comment on the applicability of the developed

methods to the case where the measurements satisfy Kirchhoff’s current law. The proposed methods are

validated via numerical examples with application to time synchronization networks.

I. INTRODUCTION

While the distributed nature of networked systems ensures reliability and availability by removing

single points of failure in the system, it provides a malicious agent with multiple points of entry into the

system that may be used by an agent to eavesdrop on the data and/or corrupt the communicated/measured

information between subsystems in the network. In addition, by introducing more components to the

system we increase the probability of hardware failures and having faulty measurements. Due to these

considerations recently the research community has started studying fault detection in networked systems,

see [1] and references therein.

The first contribution of this paper is addressing the problem of detecting additive faults that corrupt

the measurements in a network. Later, we propose a method to estimate these faults and counter-act
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André M. H. Teixeira, Henrik Sandberg, and Karl H. Johanssonare are with ACCESS Linnaeus Centre, Electri-
cal Engineering, KTH Royal Institute of Technology, Stockholm, Sweden. iman.shames@unimelb.edu.au,
{andretei,hsan,kallej}@kth.se This work was supported in part by the Swedish Research Council (VR), the
Swedish Foundation for Strategic Research, and the Knut and Alice Wallenberg Foundation.

August 31, 2012 DRAFT



DRAFT AUGUST 31, 2012 2

their effects in networks in which the inter-agent measurements should follow Kirchhoff’s voltage law

(KVL), i.e., the measurements add to zero in each loop in the network [2]. An important example for the

case where measurements satisfy KVL is the well-studied scenario of clock synchronization in networks

[3]–[6]. We note that recently the problem of identifying faulty measurements through linear models has

attracted much attention. For example, in [7] the authors propose fault identification via belief propagation

in a network and have shown their method’s superiority comparing with other state-of-the-art methods.

The main differences between the scenario studied in [7] and our result are that, first, we do not make

any assumptions on knowing the probability of occurrence of a given fault or a set of faults. Second,

in addition to identifying the faulty elements of the network, we are interested in the calculation of the

fault values when the fault vector is sparse without making any further assumption on its sparsity. We

use tools from graph theory, detection theory, and compressive sensing to address these problems. The

only information that we assume is available is the measurements and the topology of the network. No

knowledge of the parameters of the network, such as the inter node message propagation time in clock

networks, or any knowledge on the faults is assumed. Later, we briefly comment on the applicability

of similar results to networks with measurements satisfying Kirchhoff’s current law (KCL), e.g., power

or water flows in electrical and water networks, respectively. There is a vast body of literature on the

centralized detection and isolation in power systems [8]. However, those results mainly assume a complete

knowledge of the model of the system. The method introduced here is applicable to cases where the model

is not known exactly but it is known to satisfy KVL.

The structure of this paper is the following. In Section II we introduce the necessary background and

define the problems of interest. In Section III we address the problems described in Section II. In Section

IV a numerical example is introduced where the measurements in a network are faulty and the goal

is to mitigate the effect of such a fault by estimating the additive fault vector that has corrupted the

measurements. Some concluding remarks come in the end.

II. PROBLEM OF INTEREST

Consider the network N isomorphic to the (directed) graph G(V, E), where V = {i}Ni=1, is its vertex

set and E its edge set with |E| = m. Each node i has a state value denoted by xi ∈ R. Moreover the

edge (i, j) ∈ E if and only if node i measures the state of node j. In this paper we use the standard

definition of cycles in a graph, see [9] for more details. We assume that the direction of a cycle is the

order in which the nodes are visited. We let C(G) denote the set of all cycles of G, and |Λ| be the number

of edges in the cycle Λ. Moreover, we assume that C(G) 6= ∅. Note that in a directed graph, the cycle
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directions are independent of the direction of the individual edges composing the cycles, i.e., a cycle

does not require that all edges point in the same direction. We primarily focus on the following setting

in this paper.

Definition 1. For each (i, j) ∈ E node i measures ŷij = yij + fij + εij . Moreover, yij = xj − xi, where

εij is the noise in the measurements and is modeled as a stochastic variable with zero mean, and fij

is an unknown fault (typically deterministic) by which the measurements are corrupted. Furthermore, let

Ni be the set of all the nodes j such that (i, j) ∈ E . Define ỹi ∈ R|Ni|, as the vector obtained from

stacking all the measurements ŷij , ∀ j ∈ Ni. Also, let ỹ = [ỹ>1 , · · · , ỹ>N ]>, and we assume that yij for

all (i, j) ∈ E satisfy the Kirchhoff’s Voltage Law (KVL), viz.
∑

(i,j)∈Λ

yij = 0, ∀Λ ∈ C(G). Finally, let

f be obtained from stacking all fij , for all (i, j) ∈ E where the k-th element of f corresponds to the

possible fault in the measurement associated with the k-th entry of ỹ.

Before continuing we briefly comment on the physical layer and the network layer considered in this

setting. The physical layer is the underlying system where certain physical constraints are enforced, e.g.,

it corresponds to the electrical network which enforces the Kirchhoff voltage law. Then, the network

layer is the communication network, possibly an IT infrastructure, that determines what measurements

are available and how they are interchanged among the nodes.

Definition 2. For Λ ∈ C(G), the cycle vector is the vector 1Λ ∈ {−1, 0,+1}m, 1Λ ∈ Rm whose i-th

entry is +1 if the i-th edge belongs to Λ and its orientation is consistent with the orientation of Λ, −1

if the i-th edge belongs to Λ and its orientation is opposite the orientation of Λ, and is 0 otherwise.

Definition 3. Let L be the set of all the cycle vectors of graph G, i.e., L = {1Λ, ∀Λ ∈ C(G)}. A set of

fundamental cycle vectors Lf ⊂ L is a subset of L that constitute a base for the subspace spanned by

all the vectors in L. The elements of Lf are called fundamental cycle vectors. Moreover, the cycle matrix

CL of a directed graph G is the m× k matrix CL = [1Λ1
, . . . , 1Λk

] where k is the cardinality of L. The

m × ` matrix C ⊂ CL, with ` = |Lf | = m −N + 1, such that each column represents a fundamental

cycle vector in Lf , is called the fundamental cycle matrix C = [1Λ1
, ..., 1Λ`

], ∀1Λi
∈ Lf .

Fig. 1 depicts a graph and its fundamental cycles. Note that C is not unique since it depends on the

choice of the fundamental cycles vectors, and it is a full column rank matrix. Given a set of fundamental

cycle vectors Lf , we let Lf (G) denote the associated fundamental cycles Lf (G) = {Λ ∈ C(G)|1Λ ∈ Lf}.
For more information on how to calculate fundamental sets of cycles and computational complexity of
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Fig. 1. A graph with ` = 4 fundamental cycles and vectors.

doing so one may refer to [10] – for a planar graph the complexity of calculating the fundamental cycles

is linear in the number of vertices. In general graphs, the complexity is not generically more than O(n2).

Consider the network in Definition 1 and centralized computations. Just knowing the measured values,

the distribution of the noise in the measurements, the network graph, and the fact that the measurements

satisfy KVL, the answers to the following problems are desired:

Problem 1. How can one deduce that for some (or all) (i, j) ∈ E , fij is nonzero? In other words, how

can one detect if the measurements are faulty?

Problem 2. How can an estimate for f , termed f?, be calculated to be used to compute ỹc , ỹ− f?, in

which, the effect of f is ameliorated?

III. MAIN RESULT

In this section, we first consider the noiseless case where εij = 0 for all i and j such that (i, j) ∈ E .

The following theorem addresses Problem 1 for this case and serves as a starting point for the noisy case

where εij 6= 0 for all i and j such that (i, j) ∈ E .

Theorem 1. Consider the network described in Definition 1. Additionally, assume εij = 0 for all i and

j such that (i, j) ∈ E . If

‖C>ỹ‖ > 0 (1)

then f 6= 0.

Proof: Note that C has full column rank, ‖C>ỹ‖ = ‖C>y + C>f‖, and ‖C>y‖ = 0. Thus,

‖C>ỹ‖ = ‖C>f‖. Assuming ‖C>ỹ‖ > 0, then we have ‖C>f‖ > 0. Then it is immediate that f 6= 0.
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Note that (1) can be used as a test to determine if the measurements are faulty for the noisless case,

i.e., if the inequality holds then the measurements are faulty.

In what comes next we consider the noisy case where εij 6= 0 for all i and j such that (i, j) ∈ E . So

ỹ = ȳ + ε̄ (2)

where the k-th entries of ȳ and ε̄ correspond to the exact measurement and the noise in the measurement

associated with the k-th entry of ỹ where f = 0, respectively. Here ε̄ is a variable with zero mean and

Σε̄ = diag(σ̄1, . . . , σ̄m) as its covariance matrix. For the case where the measurements are not faulty, we

have

r , C>ỹ = C> (ȳ + ε̄) = C>ε̄. It is obvious that r is again a zero mean Gaussian variable with

Σr = C>Σε̄C as its covariance. Moreover, we know that C>Σε̄C is nonsingular and in fact its minimum

eigenvalue is equal to or greater than min(σ̄1, . . . , σ̄m) (This is a direct consequence of Theorem 2.3

of [11].). Consider the quadratic cost function J(r) = r>Σ−1
r r. In the absence of fault, i.e. f = 0, the

quadratic form r>Σ−1
r r has a chi-squared distribution with ` degrees of freedom. Hence, standard binary

hypothesis tests can determine if the measurements are corrupted. We omit the discussion about them

for the sake of brevity. The reader may refer to [12] for more information on such tests. For the rest

of this section we mainly focus on Problem 2. Specifically we focus on the problem of mitigating the

effect of the fault on the measurements. Hence, we study the possibility of reconstructing the vector f .

We address this problem under the following assumption.

Assumption 1. A maximum of s sensor measurements are faulty, i.e., f has at most s non-zero entries.

In other words, f is s-sparse and s is unknown to the system administrator.

Remark 1. Assumption 1 is a realistic one for small values of s because in the context of a networked

system it is not the case that all the sensors report faulty measurements at the same time. Or in case that

the faults are due to a malicious agent it can be assumed that the agent has limited resources, hence,

only capable of corrupting s measurements.

Now, consider (2) where the measurements are corrupted by f : ỹ = ȳ + f + ε̄. Multiplying both sides

by C> and setting ε̃ = C>ε̄ we have

r = C> (f + ε̄) = C>f + ε̃. (3)
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Note that ε̃ ∼ N(0,Σε̃), Σε̃ = C>Σε̄C. Normalizing (3) we have

Σ
−1/2
ε̃ r = Σ

−1/2
ε̃ C>f + Σ

−1/2
ε̃ ε̃

r̄ = C̃f + δ,

(4)

where r̄ , Σ
−1/2
ε̃ r, C̃ = Σ

−1/2
ε̃ C>, δ , Σ

−1/2
ε̃ ε̃, and δ ∼ N(0, I). Before continuing discussing the

reconstruction method based on compressive sensing theory we comment on why reconstructing an f

using the pseudoinverse of C̃, C̃†, might not be desirable. For affine systems such as (4), the pseudoinverse

may be used to construct the solution of minimum Euclidean norm among all solutions. That is fp = C̃†r̄

satisfies ‖fp‖2 ≤ ‖f‖2, for all solutions f to (4) with δ = 0. This raises two issues. First, fp is generically

dense (Hence, violating Assumption 1.) and one cannot identify which measurements are likely to be

faulty by identifying the nonzero entries of fp. Second, if the magnitude of the real fault vector f is very

large, the error in the reconstructed fp will be generically large. Now we return to reconstructing f using

the methods introduced in [13]. Since the entries of δ are i.i.d. Gaussian random variables, one can solve

the following convex optimization problem, the Dantzig selector, to reconstruct f

min
f̃
‖f̃‖1 s. t. ‖C̃>ρ‖∞ , sup

1≤i≤m

∣∣∣(C̃>ρ)
i

∣∣∣ ≤ ciλ, (5)

where ρ = C̃f̃ − r̄,
(
C̃>ρ

)
i

is the i-th entry of C̃>ρ, ci is the Euclidean norm of the i-th column of

C̃, and λ is some positive scalar. The solution to (5) is f? that can be used to mitigate the effect of the

fault by using ỹc , ỹ− f∗ instead of ỹ. Moreover, one can use all the nonzero entries of f? to identify

which sensor measurements are likely to be faulty. Algorithm 1 is proposed to identify the faulty edges

in the network. Moreover, we propose a mechanism to minimize the number of faulty measurements:

Definition 4 (Edge Healing). An edge (i, j) that is detected to be faulty is healed when fij is guaranteed

to be zero.

Algorithm 1 Identification for t Rounds
for i from 1 to t {t is an integer indicating the number of identification rounds.} do

Collect measurements ỹ;
Calculate r̄ as in (4);
Calculate f? by solving (5);
for Entries of f? ≥ ε do

Identify the corresponding edges as faulty; {0 ≤ ε}
end for

end for
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We are assuming that each node has as many sensors as the number of its neighbours (equivalently

its degree). Thus, an edge incident at a node can be healed by installing better sensing equipments to

replace the faulty hardware or using encryption in the context of fault injection by a malicious agent

[14]. Hence, healing an edge involves replacing/modifying only the sensor in the node that corresponds

to the edge being healed, not all the sensors in the node. Hence, at each round of identification applying

Algorithm 1 all the identified faulty edges are healed. In next result we identify the types of faults that

cannot be either detected or reconstructed using the methods introduced earlier.

Corollary 1. Consider the network described in Definition 1. Assuming that for a set of measurements,

(i, j) ∈ Ef ⊆ E , each measurement ŷij is corrupted by some nonzero values fij . The existence of f

cannot be detected using (1) and it cannot be reconstructed using (5) if and only if

C>f = 0. (6)

This corollary, is a direct consequence of the fact that if (6) is satisfied the obtained measurements

correspond to a physically feasible network, albeit, different from the network that is being considered.

IV. NUMERICAL EXAMPLES

In this section we consider the problem of detecting the situations where the measurements based on the

time-of-arrival (TOA) stamps measured at individual sensors from a limited number of wireless signals

transmitted by certain neighbour nodes in the network are corrupted. First we describe the measurements

taken in the network. The simplest approach for pair-wise clock synchronization is to compute the

estimate ŷij =
(t̂fji−x̂a

i )−(t̂bij−x̂b
j)

2 =
(taji−xa

i )−(tbij−xb
j)

2 + εij = yij + εij , where node i broadcasts a packet

a to node j along with x̂ai (the unknown time of transmission for message a measured in node i’s

internal time frame). Node j returns a packet b to node i along with t̂aji, the measured travel time of

packet a to j, and x̂bj . Node i then measures t̂bij and computes ŷij where the real relative clock bias at i is

yij = xj−xi. In the rest of this section we consider the scenario where the time difference measurements

to achieve synchronization in a randomly generated network with 100 nodes and 435 edges are faulty

(Matlab codes can be found at http://eemensch.tumblr.com/post/17650877823/kvlsim.). Specifically, it

is considered that measurements in the range of 0 and 20 are corrupted by faults uniformly picked

from [−10, 10]. However, note that none of these information are used to reconstruct the fault vector,

moreover, it is assumed that the measurements noise is a zero mean Gaussian variable with variance of

one. For this example 7 different cases are considered where the sparsity of the fault vectors (number
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Fig. 2. The mean error between the reconstructed fault vector and the real fault vector for different sparsities of the fault vector
using two different methods (‖f − f?‖ and ‖f − fp‖).
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Fig. 3. The percentage of correctly identified nonzero entries of f using the Dantzig selector, and the percentage of falsely
identified nonzero entries of f using the Dantzig selector.

of non-zero entries of the fault vector) varies from 20 to 200 in steps of 30. The mean error between

the reconstructed fault vector and the real fault vector for each of these cases is depicted in Fig. 2 both

when the reconstruction is done using the pseudoinverse matrix and the Dantzig selector with λ = 3.486,

see [13] for more discussion on λ. In Fig. 3 the percentage of correctly and the percentage of falsely

identified nonzero entries of f using Algorithm 1 for each of the aforementioned cases is depicted. In

the next scenario, we exhibit the benefit of reconstructing the fault vectors and mitigating the effect of
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Fig. 4. The mean squared error between the exact measurements and the measured values for both the cases where the effect
of the fault vector is mitigated and not after applying the method described in [5].

them via calculating ỹc. We have repeated the simulations for 50 times. We use the method described

in [5] to enforce the cycle constraints to improve the measurements using the raw measurements, ỹ, and

measurements values corrected by deducting the estimated fault vector from them, ỹc. The mean square

error between the resulting values and the real measurements are depicted in Fig. 4. In the next scenario

we apply Algorithm 1 to detect the faulty measurements and consequently healing those faulty edges.

For s = 200 and t = 2 on average 94% of the faulty edges are healed and the source of the faulty

measurements in these edges will be eliminated. Simultaneously, in the same scenario, 12.7 edges are

falsely identified as faulty. We conclude this section by commenting on the fact that choosing different

C does not affect the performance of the proposed algorithms. The reason is to the fact that C is always

well-conditioned. And while different choices of C might result in slight numerical improvements, they

will not have any decisive effect on the output of the algorithm.

V. CONCLUSION

In this paper we considered the problem of detecting if a set of measurements in a network are faulty.

We focused on those types of measurements that satisfy KVL and used tools from graph theory to detect

if the measurements are corrupted without assuming any knowledge about the parameters of the network.

Later, we used tools from compressive sensing to reconstruct the fault vector corrupting the measurements

(either due to a malicious agent or hardware faults) to mitigate the effect of such faults. Moreover, we

proposed an edge healing method to reinforce certain vulnerable edges in the network. We showed the

applicability of the proposed methods in this paper through numerical examples. We note that when
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accurate a priori statistical characterisation of the faults are available application of the method proposed

in [7] possibly yields better results.

We conclude this paper by commenting on how to address problems similar to Problems 1 and 2 in

a network where measurements satisfy Kirchhoff’s Current Law (KCL). In such a scenario, instead of

C we use N − 1 columns of the node-to-edge incidence matrix of G, denoted by N ∈ Rm×N−1. It is

further assumed that all the flows, e.g., currents or water flows, along the edges are known. Noting that

N is a full column matrix, the same ideas as described earlier in this paper can be applied to address

problems similar to Problems 1 and 2.
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