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Abstract— In this paper, we consider stealthy data injection
attacks against control systems, and develop security sensitivity
metrics to quantify their impact on the system. The final objec-
tive of this work is to use such metrics as objective functions
in the design of optimal resilient controllers against stealthy
attacks, akin to the classical design of optimal H∞ robust
controllers. As a first metric, the recently proposed `2 output
to output gain is first examined, and fundamental limitations of
this gain for systems with strictly proper dynamics are uncov-
ered and characterized. To circumvent such limitations, a new
security sensitivity metric is proposed, namely the truncated
`2 gain. Necessary and sufficient conditions for this gain to be
finite are derived, which we show can cope with strictly proper
systems. Finally, we report preliminary investigations on the
design of optimal resilient controllers, which are supported and
illustrated through numerical examples.

I. INTRODUCTION

The topic of cyber-secure control systems has been receiv-
ing increasing attention recently. An overview of existing
cyber-threats and vulnerabilities in networked control sys-
tems is presented in [1], [2]. Rational adversary models are
highlighted as one of the key items in security for control
systems, thus making adversaries endowed with intelligence
and intent, as opposed to faults. Therefore, these adversaries
may exploit existing vulnerabilities and limitations in the
traditional anomaly detection mechanisms and remain un-
detected. In fact, [3] uses tools from geometric control to
study such fundamental limitations and characterizes a set
of stealthy attack policies for networked systems modeled
by differential-algebraic equations. Related stealthy attack
policies were also considered in [2], [4], while the work
by [5] characterizes the number of corrupted sensor channels
that cannot be detected during a finite time-interval. A
common thread within these approaches is that stealthy
attacks are constrained to be entirely decoupled from the
anomaly detector’s output. Classes of attacks that are in
theory detectable, but hard to detect in practice, have not
received as much attention.

Another important direction is to analyze the potential
damage of stealthy attacks. Recently, [6] investigated the
detectability limitations and performance degradation of data
injection attacks in stochastic control systems. The impact of
stealthy data injection attacks on sensors is also investigated
in [7], which characterized the set of states reachable by
stealthy adversary. The work in [8] formulated the impact of
data injection attacks in finite time-horizon as a generalized
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eigenvalue problem, whereas [9] considered an alternative
formulation that allowed for the impact to be characterized
as the solution to a convex optimization problem. A similar
approach was considered in [10] for impulsive attacks.

While this set of results is useful to assess the impact
of stealthy cyber-attacks on control systems, they cannot be
used to directly design more resilient controllers, since the
optimization problems have a complex non-convex depen-
dence on the design parameters.

The impact and detectability of data injection attacks
has also been jointly considered in the author’s previous
work [11], where the impact of stealthy attacks is character-
ized as the solution to a convex problem with linear matrix
inequalities (LMIs). This characterization has a remarkable
similarity with existing optimization-based techniques to
design optimal H∞ robust detectors and controllers [12],
[13], which points to the possibility of using the metric
in [11] to design resilient control systems.

As main contributions of this paper, we revisit the sensi-
tivity metric developed in [11], and show that it has a funda-
mental limitation for analyzing systems with strictly proper
dynamics from the attack signal to the anomaly detector’s
output. To circumvent such a limitation, an alternative metric
is proposed, namely the truncated `2 output to output gain.
Properties of this gain and its use in the design of optimal
resilient controllers against stealthy attacks are investigated.

The outline of the paper is as follows. In Section II, we
describe the problem formulation, present the closed-loop
system under data injection attacks to the actuation signals,
and describe the adversary model under consideration. A
background on dissipative systems theory is provided in Sec-
tion III, to support the discussions in the following sections.
Section IV formulates the optimal attack policy, and analyzes
fundamental limitations in such a formulation for systems
with strictly proper parts. To address such limitations, a novel
attack policy is proposed in Section V, which allows for
strictly proper systems to be considered. Properties of this
novel policy are investigated, and its use in the design of
optimal controllers is discussed. In Section VI, the results are
illustrated for a scalar system, for The paper concludes with
final remarks and discussion on future work in Section VII.

A. Notation

Denote R, C, Z. and Z+ as the set of real, complex,
integer, and non-negative integer numbers, respectively. The
set of matrices with m rows, n columns, and entries in R
(C) is denoted as Rm×n (Cm×n). A positive (semi-)definite
square matrix A ∈ Cn×n is denoted as A � 0 (A � 0).
Let x : Z+ → Rn be a real-valued discrete-time signal and



denote x[k] ∈ Rn as its value at time k ∈ Z+. Considering
the time-horizon [0, N ] = {k ∈ Z+| 0 ≤ k ≤ N} and the
real-valued signals x and y, denote the `2-norm of x over
[0, N ] as ‖x‖2[0,N ]. Let the space of square integrable signals
be defined as as `2 , {x : Z+ → Rn| ‖x‖2[0,∞] < ∞}
and define the extended signal space `2e , {x : Z+ →
Rn| ‖x‖2[0,N ] <∞, ∀N ∈ Z+}.

II. PROBLEM FORMULATION AND BACKGROUND

In this section, we present the model of the closed-loop
system and characterize the adversary model.

A. Closed-loop control system
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Fig. 1. Control system under a data injection attack on the control signal.

Consider the control system illustrated in Fig. 1, which is
composed by a plant (P), a controller (C), and an anomaly
detector (D). The closed-loop system is under a cyber-
attack on the control signal, where the adversary (A) injects
false-data on the control signal transmitted to the actuator.
For the sake of simplifying the presentation, suppose that
the controller is a static output feedback, and the anomaly
detector is a state observer, described respectively by

P :


xp[k + 1] = Axp[k] +Bũ[k]

y[k] = Cxp[k]

yp[k] = CJxp[k] +DJ ũ[k]

(1)

C :
{
u[k] = Ly[k] (2)

D :

{
x̂p[k + 1] = Ax̂p[k] +Bu[k] +Kyr[k]

yr[k] = y[k]− Cx̂p[k],
(3)

where ũ[k] ∈ Rnu is the control signal received by the
actuator, u[k] ∈ Rnu is the control signal computed by the
controller, y[k] ∈ Rnm is the measurement signal used by
the controller and anomaly detector, x̂p[k] ∈ Rnx is the state
estimate, yp[k] ∈ Rnp is the performance output, and yr[k] ∈
Rnr is the detection output (residual) that is evaluated to
ascertain the presence of anomalies. The controller gain is
denoted by L ∈ Rnu×nm , while K ∈ Rnx×nm is the
observer gain. The closed-loop system is said to have a good
performance if the energy of the performance output, ‖yp‖`2 ,
is small. Additionally, an anomaly is said to be detected if
the energy of the detection output, ‖yr‖`2 , is larger than a
given threshold.

Remark 1: In this formulation, the performance output
yp[k] relates to typical quadratic costs considered in optimal
control problems, where,

‖yp‖2`2 =

∞∑
k=0

[
x[k]
ũ[k]

]> [
C>J
D>J

] [
CJ DJ

] [x[k]
ũ[k]

]

B. False-data injection attack scenario

Given the structure of the closed-loop system described
above, we now present the attack scenario. In particular, we
discuss the model knowledge and disruption and disclosure
resources available to the adversary, together with the adver-
sary’s goals and constraints shaping the attack policy.

Disruption and disclosure resources: In the present
scenario, the adversary can inject false-data in the actuator
and channels, which is captured by having

A :
{
ũ[k] = u[k] + a[k]

where a[k] ∈ Rnu is the data corruption inserted by the
adversary. However, the adversary cannot eavesdrop on the
sensor and actuator data. Hence, the corresponding attack
policy does not use any online data of the system, corre-
sponding to an open-loop policy, and is further assumed to
be computed a priori.

Model knowledge: In the present scenario, the adversary
also has access to the detailed model of the closed-loop
system as described below, which is used to compute the
attack policy. Defining e[k] , xp[k] − x̂p[k] and x[k] ,
[xp[k]> e[k]>]>, the closed-loop system dynamics under
attack, describing how the outputs yp[k] and yr[k] depend
on the attack a[k], are given by

Σ ,


x[k + 1] = Aclx[k] +Bcla[k]

yp[k] = Cpx[k] +Dpa[k]

yr[k] = Crx[k] +Dra[k]

, (4)

where the matrices are given by

Acl ,

[
A+BLC 0

0 A−KC

]
, Bcl ,

[
B
B

]
Cp ,

[
CJ +DJLC 0

]
, Dp , DJ ,

Cr ,
[
0 C

]
, Dr , 0.

(5)

Furthermore, we define the systems Σp , (Acl, Bcl, Cp, Dp)
and Σr , (Acl, Bcl, Cr, Dr) for ease of presentation.

Attack goals and constraints: In this cyber-attack
scenario, the adversary aims at designing the data corrup-
tion a[k] as to maximize the impact on the performance
output yp[k], while remaining undetected with respect to
the detection output yr[k]. The level of disruption, i.e.,
impact, is evaluated through the increase in the cost function
JN (xp, ũ) = ‖yp‖2[0,N ], the energy of the performance
output. On the other hand, the adversary remains stealthy if
no alarm is triggered, i.e., ‖yr‖2[0,N ] ≤ 1. Thus the adversary
is constrained to keep the energy of the detection output
bounded. These elements lead to the following attack policy.

C. Strategic stealthy attack policy

Given the adversary model previously described, we let N
go to infinity and consider optimal policies that maximize
the energy of the performance output (i.e., the control cost)
J∞(xp, ũ) = ‖yp‖2[0,∞] while ensuring that the energy of
the detection output is bounded as ‖yr‖2[0,∞] ≤ 1.

Therefore, the maximum ratio (gain) between ‖yp‖2[0,∞]

and ‖yr‖2[0,∞] captures the maximum level of disruption



induced by a stealthy adversary, relative to the detection
threshold. Such an attack policy will be further characterized
and discussed in Section IV.

III. DISSIPATIVE SYSTEMS THEORY

Consider the discrete-time system Σ = (A,B,C,D) with
state x[k] ∈ Rnx and input u[k] ∈ Rnu . Define a real-valued
function of the inputs and states of the system, called supply-
rate, as s : Rnu × Rnx → R, together with a non-negative
function of the states V : Rnx → R+, called storage
function. In particular, we consider quadratic supply rates
characterized by

s(u, x) =

[
x
u

]> [
Qxx Qxu
Qux Quu

]
︸ ︷︷ ︸

Q

[
x
u

]
, (6)

where Q = Q> ∈ Rnx+nu×nx+nu , without any definiteness
constraints being imposed on Q. Since Q is symmetric, and
thus diagonalizable, note that Q can be decomposed as

Q = [Cr Dr]
>[Cr Dr]− [Cp Dp]

>[Cp Dp],

for appropriate matrices Cr, Dr, Cp, and Dp, and the supply
rate can also be rewritten as s(u, x) = ‖yr‖2 − ‖yp‖2.

In the literature, the discrete-time system Σ is said to be
dissipative with respect to the supply rate s(u, x) if there
exists a real-valued function V (x) such that the inequality

V (x[k1])− V (x[k0]) ≤
k1−1∑
k=k0

s(u[k], x[k])

= ‖yr‖2[k0,k1] − ‖yp‖2[k0,k1]

(7)

holds for all k0 ≤ k1 and all trajectories of the system.
Remark 2: By writing the dissipation inequality in terms

of a difference in between output energies, most of the
definitions and results of dissipative systems for continuous-
time systems can be straightforwardly mapped to discrete-
time systems, and vice-versa, as it has been highlighted by
different authors [14], [15]. Therefore, for brevity, the proofs
in the present section are omitted.

Without loss of generality, for quadratic supply rates (6)
and linear time-invariant systems, the storage functions can
be taken as quadratic functions of the state of the form
V (x[k]) = x[k]>Px[k], with P = P>.

The next results, essential to the derivations presented in
the next section, immediately follows from its continuous-
term counter parts: [16, Theorems 8.4.5 and 8.4.9].

Proposition 1: Consider the LTI system Σ =
(A,B,C,D), which is assumed to be controllable, and
the quadratic supply rate s(u, x) = ‖yr‖2 − ‖yp‖2.
Define Gr(z) = Cr(zI − A)−1B + Dr and
Gp(z) = Cp(zI − A)−1B + Dp. The following statements
are equivalent:

1) the system Σ is dissipative w.r.t. s(u, x);
2) for all trajectories of the system such that N > 0 and

x[0] = 0, we have
N−1∑
k=0

s(x[k], u[k]) ≥ 0;

3) there exists a positive semi-definite matrix P � 0 such
that the following linear matrix inequality (LMI) holds:[

A>PA− P A>PB

B>PA B>PB

]
−Q � 0. (8)

4) Gr(z̄)
>Gr(z)−Gp(z̄)>Gp(z) � 0 for all z ∈ C with

z 6∈ σ(A), |z| ≥ 1.
Similar results can be established for the notion of cyclo-

dissipative [15] (or internally dissipative [16]) systems.
Proposition 2: Consider the LTI system Σ =

(A,B,C,D), which is assumed to be controllable, and
the quadratic supply rate s(u, x) = ‖yr‖2 − ‖yp‖2.
Define Gr(z) = Cr(zI − A)−1B + Dr and
Gp(z) = Cp(zI − A)−1B + Dp. The following statements
are equivalent:

1) the system Σ is cyclo-dissipative w.r.t. s(u, x);
2) for all trajectories of the system such that N > 0 and

x[0] = x[N ] = 0, we have
N−1∑
k=0

s(x[k], u[k]) ≥ 0;

3) there exists a symmetric matrix P = P> such that the
LMI (8) holds;

4) Gr(z̄)
>Gr(z)−Gp(z̄)>Gp(z) � 0 for all z ∈ C with

z 6∈ σ(A), |z| = 1.

IV. THE `2 OUTPUT TO OUTPUT GAIN

The shortcomings of the classical sensitivity metrics when
applied to malicious attacks, as summarized in review of the
the state-of-the-art, can be tackled by defining novel metrics
that jointly trade-off the attack’s impact and detectability.
One instance of a metric tailored to consider the impact and
detectability has been proposed in previous work [11], as
summarized below.

Recall the example scenario described in Section II, where
the closed-loop dynamics of the control system under attack
are given by (4). Given an adversary that aims at maximizing
the decrease in performance while remaining undetected, the
corresponding attack policy can be formulated as the solution
to the following non-convex optimization problem

‖Σ‖2`2e, yp←yr , sup
a∈`2e

‖yp‖2[0,∞]

subject to (4) ∀k ≥ 0, x[0] = 0,
‖yr‖2[0,∞] ≤ 1,

(9)
where ‖Σ‖2`2, yp←yr captures the maximum impact induced
by a stealthy adversary.

Remark 3: Observe that non-vanishing undetectable at-
tacks, which force yr[k] = 0 for all k and have infinite
energy, result in unbounded gain ‖Σ‖2`2e, yp .

The work in [11] first investigates necessary and sufficient
conditions under which ‖Σ‖2`2e, yp←yr admits a finite value,
and later exploits methods from dissipative system theory
to rewrite the non-convex problem (9) as a convex semidef-
inite programming problem, where ‖Σ‖2`2e,yp←yr = γ? is



obtained from the optimal solution of

minimize
P,γ

γ

subject to P � 0, γ > 0,
R(Σ, P, γ) � 0,

(10)

where R(Σ, P, γ) is given by

R(Σ, P, γ) ,

[
A>clPAcl − P A>clPBcl
B>clPAcl B>clPBcl

]
− γ

[
C>r
D>r

] [
Cr Dr

]
+

[
C>p
D>p

] [
Cp Dp

]
.

The work in [11] provides a first formulation and char-
acterization of a novel sensitivity metric, ‖Σ‖2`2e, yp←yr ,
that has a clear relation to cyber-security and quantifies the
sensitivity of the system to malicious stealthy adversaries.
However, as elaborated next, this metric suffers from a
fundamental limitation when applied to systems with strictly
proper components.

Lemma 1: Let Dp 6= 0 be of full column rank, and let
Dr = 0. Then the `2 output to output gain gain is unbounded.

Proof: The proof follows directly from item 4) of
Proposition 1, or alternatively from [11, Theorem 2], which
states that the gain is finite if and only if the unstable zeros
of Σr are contained in the zeros of Σp. For the case where
Dp 6= Dr = 0, note that Σr has an unstable zero at infinity,
for z =∞. On the other hand, Σp does not have any zeros
at infinity, which concludes the proof.

A few remarks are in order. First, the latter fundamental
limitation means that, for systems with Dp 6= Dr = 0, the
metric ‖Σ‖2`2e, yp←yr will always be unbounded, and thus
it provides no other information about the susceptibility to
stealthy attacks. Second, despite the existence of specific
attacks that result in unbounded gains, we are still interested
in assessing and mitigating the impact of other stealthy
attacks. To overcome such a fundamental limitation and
enable the analysis of more general stealthy attacks, we
propose an alternative metric for assessing the impact of
stealthy attacks.

V. THE TRUNCATED `2 OUTPUT TO OUPUT GAIN

The limitation of ‖Σ‖2`2e, yp←yr in handling systems with
Dr = 0 and Dp 6= 0 may be overcome by looking into
alternative formulations of the sensitivity metric that exclude
the role of the zeros at infinity.

For instance, consider the scenario where the adversary
wishes to maximize the impact while remaining undetected
over a long period of time, and eventually stop the attack
and leave without triggering an alarm. The impact of such
an attack may be captured by the following sensitivity metric:

‖Σ‖2`2e[−∞, 0], yp←yr , sup
a∈`2e[−∞, 0]

‖yp‖2[−∞,∞]

subject to (4), ∀k > −∞,
x[−∞] = 0,
‖yr‖2[−∞,+∞] ≤ 1,

a[k] = 0, ∀k ≥ 0.
(11)

where the final constraint forces the attack to stop at k = 0.
Note, however, that the impact and detection are considered
even after the attack has ended, for k ≥ 0.

Given that the attack stops at k = 0, the system for
k ≥ 0 becomes an autonomous system without external
inputs, released from an initial condition x[0] that depends on
the past attack signal. Hence, ‖yp‖2[0,∞] can be characterized
as ‖yp‖2[0,∞] = x[0]>Wpx[0], where Wp is the observability
Gramian of the closed-loop system with respect to the
performance output yp. Similarly, we have ‖yr‖2[0,∞] =

x[0]>Wrx[0], where Wr is the observability Gramian of the
closed-loop system with respect to the detection output yr.
Using these characterizations of ‖yp‖2[0,∞] and ‖yr‖2[0,∞],
together with results from dissipative theory as in [11], the
sensitivity metric (11) can then be re-written as

‖Σ‖2`2e[−∞, 0], yp←yr = minimize
P=P>,γ>0

γ

subject to P −Wp + γWr � 0,
R(Σ, P, γ) � 0.

(12)

A. Necessary conditions for finite truncated gain

Necessary conditions under which the truncated gain is
finite are now subject to analysis. First, note that the null
spaces of Wr � 0 and Wp � 0 are related unobservable
subspaces. As a consequence, the following result follows.

Lemma 2: The truncated gain is unbounded if there exists
a subspace, associated with an unstable mode of the closed-
loop system, that is reachable from the origin, unobservable
for Σr, and observable for Σp.

Proof: The result follows straightforwardly from the
time-domain characterization of the gain (11). First, recall
that a state x results in x>Wrx = 0 if it is unobservable
with respect to Σr. Second, if the same state is observable
with respect to Σp, then it yields x>Wpx 6= 0. Hence, if
there exists such a reachable subspace and it is associated
with an unstable mode of Acl, then an optimal attack policy
would enforce x[0] = εx, for some small ε 6= 0 such that the
detectability constraint is met. As a result, the output yp[k]
would be increasing after k = 0, while yr[k] would remain
at constant, and thus result in an unbounded gain.

The previous sufficient condition provides one instance
when the gain is unbounded, which is related to the first
LMI constraint in (12). However, it is not applicable to
stable closed-loop systems. For the case of stable systems,
we instead have the following result, which relates to the
second constraint in (12).

Lemma 3: The truncated gain is unbounded if there exists
a periodic trajectory from x[−∞] = 0 to x[0] = 0 such that
‖yr‖[−∞, 0] = 0 and ‖yp‖[−∞, 0] 6= 0.

Proof: The result is a direct consequence of the time-
domain characterization of the gain (11). Naturally, if the
condition holds for a given attack signal, then such attack
signal can be scaled arbitrarily and result in unbounded gain.

Remark 4: As seen in Proposition 2, the concept of cyclo-
dissipativity characterizes the non-negativity of the total



supply over all periodic trajectories, which in our case would
mean that γ‖yr‖[−∞, 0] − ‖yp‖[−∞, 0] ≥ 0 must hold for
periodic trajectories such that x[−∞] = x[0]. In particular,
a system is cyclo-dissipative if and only if R(Σ, P, γ) �
0 holds for some symmetric matrix P , which is exactly
the non-trivial constraint in (12). Hence, the absence of
cyclo-dissipativity is indeed related to Lemma 3, and to the
infeasibility of the second LMI constraint in (12).

In addition to these results, note that the gain is truncated
gain is finite if both conditions are absent. In other words, a
stable closed-loop system for which all periodic trajectories
satisfy γ‖yr‖[−∞, 0] − ‖yp‖[−∞, 0] ≥ 0, for some γ > 0, is
ensured to have a finite truncated gain. Thus the proposed
gain successfully addresses the limitations of the original
output to output gain for systems with Dp 6= Dr = 0.

Next we explore the problem of designing a controller that
minimizes the truncated gain of the closed-loop system, for
a fixed anomaly detector.

B. Design of resilient controllers

The security metrics formulated above allow to character-
ize the worst-case impact of a stealthy cyber-attack on the
performance of the closed-loop system. Therefore, designing
a controller that minimizes the security metrics would yield
a reduced impact for the same level of detectability. The
optimal controller L mitigating stealthy attacks can then be
chosen as to minimize ‖Σ(L)‖2`2e[−∞, 0], yp←yr , which may
be formulated as the following optimization problem:

minimize
P=P>,γ,L

γ

subject to P + γWr(L)−Wp(L) � 0, γ > 0,
R(Σ(L), γ) � 0,

(13)

where Wr(L) and Wp(L) are the observability Gramians
of Σr and Σp, respectively, which also depend on the
controller gain L through Lyapunov equations. Note that (13)
is not a standard optimal H∞ control problem, despite the
possible resemblances. In particular, note that P , Wr, and
Wp can all depend on the controller, and that P may not
even be invertible, as required in standard H∞ controller
design techniques [13]. The solution to the above design
problem therefore requires a closer investigation, which is
left as future work. However, for the simple scalar case,
one can evaluate the optimal controller by brute force.
This exploration is reported in the next section through a
numerical example.

VI. NUMERICAL EXAMPLE

In this section, we illustrate the results from earlier
sections on the example system described in (4) with the
following parameters: A = 1.1, B = 0.1, C = 1, CJ =
[1 0]>, DJ = [0 1]> L = −10 and K = 0.5.

A. `2 output to output gain

Constructing (4) with these parameters and solving (10),
we observe that (10) is infeasible, and conclude that
‖Σ‖2`2e, yp←yr is unbounded. The same result is obtained
by using the method outlined in [8], where a finite-horizon

version of (9), with a sufficiently large horizon N ≥
1, is solved using a generalized eigenvalue approach. A
closer look reveals why the gain is unbounded: the system
(Acl, Bcl, Cr, Dr) admits an unstable zero at infinity due to
Dr = 0, while (Acl, Bcl, Cp, Dp) does not since Dp 6= 0.
This corresponds precisely to result in Lemma 1.

B. Truncated `2 gain

Next, the novel sensitivity metric is illustrated on our
example, together with the following finite-horizon version
of the problem:

‖Σ‖2`2e[0, N ], yp←yr , sup
a∈`2e[0, kf ]

‖yp‖2[0,N ]

subject to (4), ∀k ≥ 0, x[0] = 0,
‖yr‖2[0,N ] ≤ 1,

a[k] = 0, ∀k ≥ kf ,
(14)

where N and kf are large and kf is sufficiently smaller
than N . In this example, we take N = 200 and kf = 150.
Solving the optimization problem (12) for our example,
we obtain ‖Σ‖2`2e[−∞, 0], yp←yr = 935.14. On the other
hand, solving (14) through a generalized eigenvalue approach
yields ‖Σ‖2`2e[0, N ], yp←yr = 934.97, based on which we
conclude that the two formulations are in agreement and
corroborate each other.

C. Optimal controller

Next, we show numerical results for simple cases that
illustrate how the sensitivity metrics may be used as an
objective function in the design of resilient controllers that
minimize the impact of malicious stealthy cyber-attacks.
Consider the system under attack as described in (4), and
suppose that the adversary aims at maximizing the impact
on the performance output yp while remaining undetected
with respect to the detection output yr. In the following,
we examine how the security metrics ‖Σ‖2`2e, yp←yr and
‖Σ‖2`2e[−∞, 0], yp←yr may be used to design a controller that
is resilient to such cyber-attacks for our illustrative example.
Therefore, here we suppose that K = 0.5 is fixed, while the
controller gain L is a decision variable.

Observe that Acl and Cp (and thus Σ) depend linearly
on the control gain L; to emphasize this, we shall use the
notation Acl(L) and Cp(L) (and Σ(L)). A natural approach
to design resilient controllers is to choose L as to minimize
one of the sensitivity metrics discussed earlier, as this results
in a lower impact by stealthy attacks.

First we look into ‖Σ(L)‖2`2e, yp←yr for K = 0.5. We
observe through a line-search over the range of the stabilizing
gains L ∈ (−21, −1) that ‖Σ(L)‖2`2e, yp←yr is always
unbounded. Such an observation is expected, as the zeros
of the system Σ are not modified by means of output
feedback [17]. Second, we perform a line-search over the
stabilizing control gains L ∈ (−21, −1) for the one
that minimizes ‖Σ‖2`2e[−∞, 0], yp←yr . In fact, this may be
achieved by iterating over L ∈ (−21, −1) and, for each
value of L, solve (12). For our illustrative example with
K = 0.5, this method results in the choice L = −1.4
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Fig. 2. Simulation example to highlight the difference between controllers.

and yields ‖Σ‖2`2e[−∞, 0], yp←yr = 294.54. Compared to
the initial controller with L = −10, the optimal controller
L = −1.4 has a three times smaller worst-case impact by
an undetectable attack. It is worth noting that an optimal
H∞ controller may be obtained in a similar way, by setting
Cr = 0 and Dr = 1, performing a line-search over L ∈
(−21, −1) and solving (10) with P � 0 for each L with the
same system parameters, which results in the optimal H∞
controller with L = −2.3. Fig. 2 illustrates the performance
of the controllers L = −1.4 and L = −2.3 to the worst-
case attack signal a[k] (top plot) , where we observe that the
respective systems have the same detection output energy
(bottom plot), but the optimal H∞ controller L = −2.3 has
a higher performance output energy than the optimal resilient
controller L = −1.4 (center plot), which indicates that the
worst-case attack has a higher impact to the optimal H∞
controller, for the same level of detectability.

The above numerical results further highlights the differ-
ences between using the proposed security metrics versus the
classical metrics, such as the H∞-norm, to design resilient
controllers to mitigate possible stealthy cyber-attacks.

VII. CONCLUSIONS

In this paper, we analyzesd and developed novel sensitivity
metrics that can jointly assess the impact and detectabil-
ity of attacks. As a first metric, the recently proposed `2
output to output gain was first examined, and we show
that, as a fundamental limitation, this gain is unbounded

for systems with strictly proper dynamics with respect to
the detection output, but with non-zero feed-through terms
in the performance output. To circumvent such limitation,
a new security sensitivity metric is proposed, namely the
truncated `2 gain. Necessary and sufficient conditions for
this gain to be finite are derived, which we show can cope
with strictly proper systems. The final objective of this
work is to use such metrics, which jointly consider impact
and detectability, as objective functions in the design of
optimal resilient controllers against stealthy attacks, akin
to the classical design of optimal H∞ robust controllers.
Preliminary investigations on the design of optimal resilient
controllers are reported, which are supported and illustrated
through numerical examples.

Future work includes a deeper investigation of optimal
controller design problem, as well as a more generic char-
acterization of the fundamental limitation of the `2 gain for
strictly proper systems.
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