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Abstract— In this paper the problem of revealing stealthy
data-injection attacks on control systems is addressed. In
particular we consider the scenario where the attacker performs
zero-dynamics attacks on the system. First, we characterize
and analyze the stealthiness properties of these attacks for
linear time-invariant systems. Then we tackle the problem of
detecting such attacks by modifying the system’s structure.
Our results provide necessary and sufficient conditions that
the modifications should satisfy in order to detect the zero-
dynamics attacks. The results and proposed detection methods
are illustrated through numerical examples.

I. I NTRODUCTION

Critical-infrastructure security is of utmost importancein
modern society and has been a major concern in recent
years. The increasing complexity of these systems and the
desire to improve their efficiency and flexibility has led
to the use of heterogeneous IT infrastructures that support
the timely exchange of data among and across different
system layers, from the corporate level to the local con-
trol level. Furthermore, IT infrastructures are composed of
heterogeneous components from several vendors and often
use non-proprietary communication networks. Therefore the
amount of cyber threats to these IT infrastructures has
greatly increased over the past years, given the larger number
of possible attack points across the several system layers.
A good illustration of this phenomena may be found in
the following article [1] about the search engine Shodan
that successfully identified several devices connected to the
internet, including components of industrial control systems.

Critical-infrastructures are also more vulnerable to cyber
threats, given their tight coupling to IT infrastructures.There
are several examples of cyber threats being exploited by
attackers to disrupt the behavior of physical processes, for in-
stance the staged attack on a power generator [2] or the more
recent Stuxnet virus attack on centrifuges’ control system[3],
[4]. Hence monitoring and mitigating cyber attacks to these
systems has become of the utmost importance, since they
may bring disastrous consequences to society. This is well
illustrated by recalling the consequences of the US-Canada
2003 blackout [5], partially due to lack of awareness in the
control center.
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A particular type of complex cyber attack is that of false-
data injection, where the attacker introduces corrupted data
in the communication network. Several instances of this
scenario have been considered in the context of control
systems, see [6], [7], [8] and references therein.

In this paper we address stealthy false-data injection
attacks that are constructed so that they cannot be detected
based on control input and measurement data. These attacks
have been recently addressed from a system theoretic per-
spective. In [9] the author characterizes the set of attack
policies for covert (stealthy) false-data injection attacks with
detailed model knowledge and full access to all sensor and
actuator channels, while [10] described the set of stealthy
false-data injection attacks for omniscient attackers with full-
state information, but possibly compromising only a subset
of the existing sensors and actuators.

Recently, an instance of stealthy false-data injection at-
tacks has been performed on an experimental networked
control system testbed [11]. The experiment showed that,
although the attack is initially hard to detect, it is in fact
detected when the system dynamics change due to physical
limitations such input saturation. Hence changes in the
system dynamics could be used to reveal stealthy false-
data attacks. In essence, this approach is similar to the
method proposed in [12] to detect replay attacks, in which
an auxiliary signal unknown to the attacker is used to excite
the system.

Contributions and outline

The set of open-loop stealthy attacks is considered in this
paper. The attack is open-loop in the sense that no online
information is used to construct the attack. As such the
attack policy is defined in terms of the availablea priori
information, namely the dynamical model of the system. This
class of attacks is shown to be characterized by a property
of the system known as zero-dynamics, thus we denote it as
the class of zero-dynamics attacks.

Using a geometric control framework, the system under
a zero-dynamics attack is characterized as an autonomous
dynamical system with a given initial condition. Furthermore,
the attack detectability is cast as an observability property of
the autonomous system previously derived. These two steps
provide the basis of our results.

It is shown that zero-dynamics attacks may not be com-
pletely stealthy since they require the system to be at a
non-zero initial condition. The effects of initial condition
mismatch are then characterized and it is shown that they
can be made arbitrarily small. The problem of changing the
system structure to reveal the attacks is then considered.



Specifically, we analyze how separately changing the outputs,
system dynamics, and inputs affects the attacks’ stealthiness.
For each component, we characterize classes of changes
that reveal attacks, as well as those that do not. Regarding
changes on the system outputs, we provide an algorithm
to reveal all attacks by incrementally adding new measure-
ments. As for the inputs, we characterize the output effect of
a scalar multiplicative perturbation to the inputs, assuming it
remains unknown to the attacker. This particular perturbation
can be interpreted as a coding or encryption scheme between
the controller and actuator, having the scalar factor as their
shared private key. Moreover, the corresponding contribution
to the output energy is quantified as a function of the
augmented system state, which can be used to determine
a suitable scaling factor.

The outline of the paper is as follows. The control
system architecture and model under attack are described
in Section II. Section III follows with a geometric control
characterization of zero-dynamics attacks and the effects
of non-zero initial conditions are analyzed in Section IV.
Different strategies to reveal zero-dynamics attacks are then
proposed and analyzed in Section V, followed by numerical
examples illustrating our results. Summary and conclusions
follow in Section VII.

II. CONTROL SYSTEM UNDER FALSE-DATA INJECTION

ATTACKS

In this section we describe the networked control system
structure, where we consider three main components: the
physical plant and communication network, the feedback
controller, and the anomaly detector.

The physical plant is modeled in a discrete-time state-
space form,

P :

{

xk+1 = Axk +Buk +Baak

yk = Cxk +Daak
, (1)

wherexk ∈ R
n is the state variable,uk ∈ R

q the control
actions applied to the process,yk ∈ R

p the measurements
from the sensors, andak ∈ R

d the false-data injection
attack vector at the sampling instantk ∈ Z. The system
is considered to be in nominal behavior ifak = 0 for all
k ≥ 0.

In order to comply with performance requirements in the
presence of the unknown process and measurement noises,
we consider that the physical plant is controlled by an appro-
priate linear time-invariant output feedback controller [13]
described as

uk = F(yk). (2)

An anomaly detector that monitors deviations from the
nominal behavior is also considered. The anomaly detector
is collocated with the controller and therefore it only has
access toyk and uk to evaluate the behavior of the plant.
The anomaly detector is then modeled as

rk = D(uk−1, yk), (3)

whererk ∈ R
m is the residue that is evaluated in order to

detect and locate existing anomalies. In particular, an alarm
is triggered if the residue meets

‖rk‖ ≥ τ, (4)

where τ ∈ R
+ is chosen according to a suitable trade-off

between detection and false alarm rates.
Since all the system components are linear and time-

invariant, the state of the system can be decomposed as
xk = x̄k + xa

l , where x̄k is the component of the system
under no attack andxa

k the component induced by the attack.
Furthermore, assuming the attack starts atk = k0 and having
x̄k0

= xk0
andxa

k0
= 0, the state component under attack is

modeled by

P :

{

xa
k+1 = Axa

k +Bua
k +Baak

yak = Cxa
k +Daak

, xa
k0

= 0 (5)

with ua
k = F(yak) andua

k0
= 0.

A. Stealthy attacks

DenotingAkf

k0
= {ak0

, . . . , akf
} as the attack signal, the

set of stealthy attacks are defined as follows.
Definition 1: The attack signalAkf

k0
is α-stealthy with

respect toD if ||rk|| ≤ α ∀k ≥ k0.
The particular subset of0-stealthy attacks is characterized

in the following lemma:
Lemma 1:Let yak be the output of the system (5) with

xa
k0

= 0 and ua
k0

= 0. The attack signalAkf

k0
is 0-

stealthy with respect to any output feedback controllerF
and anomaly detectorD if yak = 0, ∀k ≥ k0.

The set of0-stealthy attacks satisfying the conditions in
Lemma 1 results in trajectories of the system that do not
affect yak , and thus result inua

k = 0 for all k ≥ k0.
For linear systems the0-stealthy attack signals are related
to the output zeroing problem or zero-dynamics studied in
the control theory literature [14], which we revisit in the
next section. For the sake of notation, in the remainder of
the paper we drop the superscript when referring to system
variables under attack. Additionally, the results presented in
the following sections do not consider the influence of the
feedback controller. However the results can be generalized
by considering the augmented system composed by the plant
and controller dynamics, which is subject to future work.

B. Attacker model

In this work we consider the attacker model for zero-
dynamics attacks described in [11]. In this model the attacker
is also able to inject false data in the actuator channels, which
is captured by havingBa = B and Da = 0. However,
the attacker cannot eavesdrop on the sensor and actuator
data. Hence the corresponding attack policy does not use
any online data on the system and is further assumed to
be computeda priori. Therefore it corresponds to an open-
loop type of policy. The attacker also has access to the
detailed model of the systemΣ = (A,B,C), which is used
to compute the appropriate attack policy as described in the
following section.



III. G EOMETRIC CONTROL CHARACTERIZATION OF

ZERO-DYNAMICS

Recalling Lemma 1, the zero-dynamics attacks can be
analyzed by considering the plant dynamics due to the false-
data injection attack as described in (5).

The set of zero-dynamics attacks to (5) withBa = B
Da = 0 are now characterized under a geometric control
framework [15].

Remark 1:The case forDa 6= 0 can be analyzed in a
similar fashion.

The following assumptions onΣ = (A,B,C) are consid-
ered.

Assumption 1:The matrixB is full column-rank andC
is full row-rank. MoreoverΣ is the minimal realization of
the system.

We now introduce the necessary concepts from geometric
control theory [15] to describe the zero dynamics. In the
following we denoteA ⊆ C as the set inclusion ofA by C
andA ⊆ B + C as the set inclusion ofA by the union of
B andC. Furthermore, the range space ofB is denoted as
Im(B) and the null-space ofC asker(C).

Controlled Invariants

The first concept is that of controlled invariant subspace.
Lemma 2:For a given non-empty subspaceV for which

AV ⊆ V + Im(B) holds, there exists a matrixF such that
(A+BF )V ⊆ V. Furthermore,V is called an(A, Im(B))-
controlled invariant subspace.
The subset of controlled invariant subspaces contained in
ker(C) is the basis for characterizing the system’s zero-
dynamics, as summarized in the next statement.

Lemma 3:There exists an initial conditionx0 6= 0 and
control input ak such thatyk = 0 ∀k ≥ 0 if and only
if there exists a non-empty(A, Im(B))-controlled invariant
subspaceV such thatV ⊆ ker(C).

The set of all subspacesV satisfying the conditions of
Lemma 3 admits a maximum,V⋆, which we denote by the
maximal output-nulling invariant subspace. A procedure to
computeV⋆ can be found in [15]. Furthermore we denote the
eigenvalues ofA+BF restricted to the eigenspace spanned
by V⋆ as the zeros of the systemΣ. Denotingλ ∈ C as one
such eigenvalue, the zero is said to be unstable if|λ| > 1
and stable otherwise.

Output-nulling subspace

The output-nulling inputs of the system (5) can be char-
acterized as the output of an autonomous dynamical system
as stated in the following theorem.

Theorem 1: The input ak = Fzk with zk+1 = (A +
BF )zk, (A + BF )V⋆ ⊆ V⋆ ⊆ ker(C) and z0 ∈ V

⋆ yields
yk = 0 ∀k ≥ 0 for the initial conditionx0 = z0.

In general the above theorem characterizes only a subset
of the possible output-nulling inputs, as some inputs may
be described by a forced dynamical system. The reader is
referred to [14] for more details.

Remark 2:Note that the former definition of zero-
dynamics requires the initial condition to be non-zero and
belong toV⋆. Such requirement contradicts the definition of
0-stealthy attacks where the initial condition of the system
component under attack is the origin. The effect of having
non-zero initial conditions is addressed in the next section.
The zero-dynamics attack policy readily follows from The-
orem 1.

Corollary 1: The zero-dynamics attack policy is charac-
terized by

zk+1 = (A+BF )zk

ak = Fzk,
(6)

with z0 ∈ V
⋆ andF such that(A+BF )V⋆ ⊆ V⋆.

IV. EFFECTS OF NON-ZERO INITIAL CONDITION

Note that the zero-dynamics do not match the definition
of 0-stealthy attacks, since a non-zero initial condition in (5)
is required. However, in some cases the effects of the initial
condition may be made arbitrarily small as discussed below.

Using Corollary 1, the system under a zero-dynamics
attack is described by

[

xk+1

zk+1

]

=

[

A BF
0 A+BF

] [

xk

zk

]

yk =
[

C 0
]

[

xk

zk

] (7)

with z0 ∈ V
⋆. For x0 = z0 it directly follows that yk =

0 ∀k ≥ 0. Introducing the error variableek = xk − zk, the
previous system may be rewritten as

[

ek+1

zk+1

]

=

[

A 0
0 A+BF

] [

ek
zk

]

yk =
[

C 0
]

[

ek
zk

] (8)

with z0 ∈ V
⋆ and e0 = x0 − z0. The next result readily

follows.
Theorem 2: For a zero initial conditionx0 = 0, a zero-

dynamics attack generated byz0 ∈ V⋆ yields the output
characterized by

ek+1 = Aek

yk = Cek
,

with e0 = −z0.
The previous result allows us to characterize conditions

on which the energy of the output of zero-dynamics attacks
can be made arbitrarily small.

Corollary 2: The output of a zero-dynamics attack gener-
ated byz0 ∈ V⋆ with x0 = 0 has finite energy if and only
if z0 is orthogonal to the eigenvectors ofA associated with
unstable eigenvalues.

Proof: Recall that the system is assumed to be ob-
servable and thus there are no unobservable modes. Thus
any initial condition exciting an unstable mode affects the
output. Furthermore initial conditions only exciting stables
modes induce state trajectories decaying asymptotically to
zero, thus having finite output energy.



Now we analyze the case wherez0 is orthogonal to the un-
stable eigenvectors ofA. Consider the coordinate transform
ek = Tvk whereT = [Ts Tu] is a basis for the eigenspace
of A andTs is associated with the stable eigenvalues. The
dynamics are thus described byvk+1 = Λvk whereΛ is the
Jordan block matrix ofA containing its eigenvalues. Given
the structure ofT , Λ can be written as

Λ =

[

Λs 0
0 Λu

]

whereΛs contains all the stable eigenvalues. Supposing that
z0 only excites stable eigenvalues ofA, the output may be
characterized as

vsk+1
= Λsvsk

yk = CTsvsk
,

wherevk = [v⊤sk v
⊤
uk
]⊤ with vs0 = [Is 0u]T

−1z0 andvu0
=

[0s Iu]T
−1z0 = 0. This leads to the following result.

Corollary 3: Consider a zero-dynamics attack generated
by z0 ∈ V

⋆ with z0 orthogonal to the unstable eigenvectors
of A andx0 = 0. The output energy of such attack is given
by ‖y‖2ℓ2 = z⊤0 Q̄z0 where

Q̄ = T−⊤

[

Is
0u

]

Qs

[

Is 0u
]

T−1

andQs is the the solution to

Λ⊤

s QsΛs −Qs − T⊤

s C⊤CTs = 0

.
Proof: The proof is omitted.

The output energy of zero-dynamic attacks can thus be
made arbitrarily small by selecting a sufficiently small initial
condition z0 ∈ V

⋆/Tu to generate the attack, whereTu =
Im(Tu) and V⋆/Tu denotes the quotient space ofV⋆ with
respect toTu. Such attacks are particularly dangerous if the
initial condition z0 excites an unstable eigenvalue ofA +
BF , as illustrated in the numerical example in Section VI.
This motivates us to broaden the scope and address all zero-
dynamics attacks characterized by Theorem 1.

V. REVEALING ZERO-DYNAMICS ATTACKS

In this section we discuss possible methods to reveal the
zero-dynamics attacks characterized in Section III. The fol-
lowing definition of revealed attacks is considered throughout
this work.

Definition 2: Consider the system under attack as de-
scribed in (7). The zero-dynamics attack signalAkf

k0
is said

to be revealed ifyk 6= 0 for somek ≥ k0.
Remark 3:The former definition can be extended to re-

quire the output energy to be sufficiently large. Furthermore,
it can also account for the output feedback controller and
anomaly detector by considering the closed-loop dynamics
in (7).

Given Definition 2, the attack can be revealed if the zero-
dynamics of the system are changed. As it is well-known in
the control literature [16], this cannot be achieved by state-

or output-feedback policies. Instead, a possible method is
to modify the systemΣ = (A,B,C) in a certain way to
Σ̃ = (Ã, B̃, C̃) so that the attack signal (6) is no longer an
output-nulling input of the resulting system

[

xk+1

zk+1

]

=

[

Ã B̃F
0 A+BF

] [

xk

zk

]

yk =
[

C̃ 0
]

[

xk

zk

]

.

(9)

Since (9) is an autonomous system, the following result
readily follows.

Lemma 4:Every zero-dynamics attack is revealed if and
only if the system (9) is observable for allx0 = z0 ∈ V

⋆.
Proof: By definition of observability, a given subspace

M is observable if and only ifY = Wow0 6= 0, ∀w0 ∈
M where Y = [y⊤0 · · · y

⊤
n ]

⊤ and Wo ∈ R
np×n is the

observability matrix of the augmented system (9). Given
Definition 2,V⋆ being an observable subspace then implies
that the attacks are revealed, sinceY 6= 0.

Attacks remaining stealthy after the perturbation can also
be characterized using similar arguments.

Corollary 4: Consider a zero-dynamics attack generated
by x0 ∈ V

⋆. The former attack remains stealthy after the
perturbation if and only ifw0 = [x⊤

0 x⊤
0 ]

⊤ belongs to the
unobservable subspace of the system (9).

Proof: Supposex0 is an eigenvector ofA+BF , without
loss of generality, and consider the augmented system before
the perturbation as in (7). Since the state trajectories of (7)
generated by the attack are contained in span(w0), the state
when the perturbation occurs can be written asw̃0 = αw0,
for a givenα ∈ R. The remaining of the proof follows from
Definition 2.

A less restrictive condition for revealing the set of zero-
dynamics attacks associated with unstable zeros follows from
the above theorem.

Corollary 5: Every unstable zero-dynamics attack is re-
vealed if and only if the system (9) is detectable for all
x0 = z0 ∈ V

⋆.
A procedure to verify the observability of (9) restricted

to x0 = z0 ∈ V
⋆ is to use the corresponding observability

matrix Wo and compute

Xd = ker(Wo)
⊥ ∩

(

I
I

)

V⋆.

It follows that [x⊤
0 x⊤

0 ]
⊤ ∈ Xd belongs to the observable sub-

space and hencex0 can be estimated and the corresponding
attack signal affects the output.

Next we propose schemes to reveal the zero-dynamics
attacks by separately changingA, B, or C.

A. Modifying the output matrix C

Here we consider modifications on the output matrixC to
reveal zero-dynamics attacks. In particular, we consider that
a new output matrixC̃ is obtained by adding and removing
measurements. The following result directly follows from
Theorem 1.



Lemma 5:All the zero-dynamics attacks associated with a
givenz0 ∈ V⋆ remain stealthy with respect tõΣ = (A,B, C̃)
if and only if V⋆ ⊆ ker C̃.
The former statement shows that only removing measure-
ments does not reveal any attack. Moreover, attacks are
revealed by adding measurements if only ifV⋆ ∩ ker C̃ is
empty or a strict subset ofV⋆.

Theorem 3:There exists az0 ∈ V⋆ generating an stealthy
attack toΣ̃ = (A,B, C̃) if and only if there exists a non-
empty (A + BF )-invariant subspaceX that is contained in
V⋆ ∩ ker C̃.

Proof: First we have that all attack are revealed ifV⋆∩
ker C̃ = ∅. Now suppose thatX ⊆ V⋆ ∩ ker C̃ 6= ∅ and let
z0 ∈ X . Observing thatX ⊆ ker C̃, from Theorem 1 we
have that the attack generated byz0 remains stealthy if and
only if X is (A+BF )-invariant.

The previous results indicate that one should add mea-
surements such that the dimension ofX = V⋆ ∩ ker(C̃) is
reduced as much as possible. In particular,X ⊂ V⋆ indicates
that a set of the zero-dynamics attacks has been revealed,
while X = ∅ implies that none of the zero-dynamics attacks
remains stealthy.

Based on these arguments, Algorithm 1 can be used to in-
crementally deploy measurements that reveal zero-dynamics
attacks

Algorithm 1 Algorithm to deploy additional measurements
revealing zero-dynamics attacks.

Initialize M ← {Ci} as the set of additional measure-
ments available;
j ← 0;
X0 ← V

⋆;
repeat

for all Ci ∈M do
Yi ← Xj ∩ kerCi;

end for
ChooseCi ∈M such thatdim(Yi) is minimized;
ComputeXj+1 as the maximal(A + BF )-invariant
contained inYi;
j ← j + 1;

until Xj = ∅ or Xj−1 = Xj

Note that the proposed algorithm requires the addition of
at mostN = dim(V⋆) new measurements. Furthermore, all
the zero-dynamics attacks become revealed if and only if the
output-nulling subspace is empty, i.e.Xj = ∅.

B. Modifying the system matrix A

Perturbations to the system dynamics asÃ = A + ∆A
are now considered, resulting in the systemΣ̃ = (Ã, B,C).
The following result provides the conditions under which an
attack remains stealthy.

Theorem 4:All the zero-dynamics attacks associated with
a given z0 ∈ V

⋆ remain stealthy with respect tõΣ =
(Ã, B,C) if and only if V⋆ ⊆ ker∆A.

Proof: Let z0 ∈ V⋆ and recall thatw0 = [z⊤0 z⊤0 ]⊤

belongs to the unobservable subspace of the augmented

system (7). From Corollary 4, the attack remains stealthy
if and only if w0 is also in the unobservable subspace of the
perturbed system (9). Using the PBH observability test [13],
this means that there exists a complex numberλ such that





λI − Ã −BF
0 λI − (A+BF )
C 0





[

z0
z0

]

= 0.

Thus the attack is stealthy if and only if∆Az0 = 0, which
concludes the proof.

The above result indicates that∆A should be designed
so thatV 6⊆ ker∆A for all (A + BF )-invariant subspaces
V ⊆ V⋆, thus revealing all the zero-dynamics attacks. Below
we provide a necessary and sufficient condition for all the
attacks to be revealed.

Corollary 6: All the zero-dynamics attacks are revealed if
and only ifV⋆ ∩ ker∆A = ∅.

C. Modifying the input matrix B

Here we consider modifications on the input matrixB
to reveal zero-dynamics attacks. A new input matrixB̃ is
obtained by adding and removing actuators or perturbing
theB with ∆B. The following result directly follows from
Theorem 1.

Lemma 6:Suppose inputs are added toΣ, i.e. B̃ =
[BBi]. Then all the zero-dynamics attacks onΣ remain
stealthy with respect tõΣ = (A, B̃, C).

Proof: The proof is omitted.
The former statement shows that only adding inputs does

not reveal any attack. On the other hand, although removing
actuators might reveal the zero-dynamics attacks, it also
reduces the controllability of the system. A less intrusive
approach is to change the actuator gains i.e., haveB̃ = BW
andũk = W−1uk whereW is a diagonal matrix unknown to
the attacker. This can be interpreted as a coding or encryption
scheme performed by the actuator and controller withW as
their shared private key. AssumingW is unknown by the
attacker, we then have the following result.

Theorem 5:All the zero-dynamics attacks onΣ remain
stealthy with respect tõΣ = (A,BW,C) if and only if
B(W − I)FV⋆ = ∅.

Proof: Let z0 ∈ V⋆ and recall thatw0 = [z⊤0 z⊤0 ]⊤ is
in the unobservable subspace of the perturbed system (9) if
and only if there exists a complex numberλ such that





λI −A −BWF
0 λI − (A+BF )
C 0





[

z0
z0

]

= 0.

Thus the attack is stealthy if and only ifB(W − I)Fz0 = 0,
which concludes the proof.
A necessary and sufficient condition for zero-dynamics at-
tacks to be revealed with such perturbations follows directly
from the previous theorem.

Corollary 7: All the zero-dynamics attacks are revealed if
and only ifV⋆ ∩ ker(B(W − I)F ) = ∅.

The former result and the assumption that the system is
observable can be used to provide a method for choosingW .



Lemma 7:Assume that(A,C) is observable. For any
matrix F such thatV⋆ is (A + BF )-invariant, it holds that
V⋆ ∩ ker(BF ) = ∅.

Proof: Recall theV⋆ is (A+BF )-invariant and suppose
that V⋆ ∩ ker(BF ) 6= ∅ i.e., there existsz0 ∈ V⋆ such
that BFz0 = 0. This then implies thatz0 is A-invariant
and generates an unobservable state trajectory, which is a
contradiction since the system is observable.

Since ker(BF ) is not affected by a uniform scaling, a
possible weight for revealing zero-dynamics attacks isW =
αI with α ∈ R+ and α 6= 1, resulting inB(W − I)F =
(α−1)BF . We now analyze the effects of such perturbation
on the output energy of the system. Introducing the variable
x̃k = α−1xk, the perturbed system (9) can be rewritten as

[

x̃k+1

zk+1

]

=

[

A BF
0 A+BF

] [

x̃k

zk

]

yk =
[

αC 0
]

[

x̃k

zk

]

,

(10)

with x̃0 = α−1z0 and z0 ∈ V
⋆. The output of such system

is characterized as follows.
Theorem 6: Suppose the augmented system under a zero-

dynamics attack (9) is at the statezk = xk = z when the
perturbationW = αI is performed. After the perturbation
the output is described by

ek+1 = Aek

yk = αCek
,

with e0 = (α−1 − 1)z.
Proof: The proof comes from introducing the variable

ek = x̃k − zk and rewriting (10) with respect toek andzk.

Note that the output energy after the perturbation is
dependent onz and the scalingα, as summarized in the
following statements.

Corollary 8: The perturbationW = αI results in a
finite-energy output if and only ifz is orthogonal to the
eigenvectors ofA associated with unstable eigenvalues.

Consider the eigenvalue decomposition

A = TΛT−1 =
[

Ts Tu

]

[

Λs 0
0 Λu

]

[

Ts Tu

]−1
,

whereΛs contains all the stable eigenvalues ofA andTs is
a basis of the corresponding eigenspace.

Corollary 9: Consider the output described in Theorem 6
with z orthogonal to the unstable eigenvectors ofA. The
energy of the output is given by‖y‖2ℓ2 = z⊤Q̄z where

Q̄ = T−⊤

[

Is
0u

]

Qs

[

Is 0u
]

T−1

andQs is the the solution to

Λ⊤

s QsΛs −Qs − α2T⊤

s C⊤CTs = 0

.

VI. I LLUSTRATIVE EXAMPLE

To better illustrate the results from the previous sections,
here we provide an example of a zero-dynamics attack
on a process control system. Our example consists of the
Quadruple-Tank Process (QTP) [17]. The continuous-time
nonlinear plant model is given by

ḣ1(t) = −
a1
A1

√

2gh1(t) +
a3
A1

√

2gh3(t) +
γ1k1
A1

u1(t)

ḣ2(t) = −
a2
A2

√

2gh2(t) +
a4
A2

√

2gh4(t) +
γ2k2
A2

u2(t)

ḣ3(t) = −
a3
A3

√

2gh3(t) +
(1− γ2)k2

A3

u2(t)

ḣ4(t) = −
a4
A4

√

2gh4(t) +
(1− γ1)k1

A4

u1(t)

(11)

wherehi are the heights of water in each tank,Ai the cross-
section area of the tanks,ai the cross-section area of the
outlet hole,ki the pump constants,γi the flow ratios andg
the gravity acceleration. The outputs are defined as the water
levels of tanks 1 and 2,h1 andh2 respectively. The system
has an adjustable zero with respect tou, which is unstable if
0 < γ1+γ2 < 1. In the simulation we consider the linearized
model at a given operating point, which is sampled with a
period of Ts = 0.5s. The resulting discrete-time system is
given by (1) with

A =









0.975 0 0.042 0
0 0.977 0 0.044
0 0 0.958 0
0 0 0 0.956









,

B =









0.0515 0.0016
0.0019 0.0447

0 0.0737
0.0850 0









,

C =

[

0.2 0 0 0
0 0.2 0 0

]

.

The corresponding maximal(A, ImB)-controlled invari-
ant subspace contained inker(C), V⋆, is spanned byV ⋆

which is shown below together with a suitableF

V ⋆ =









0 0
0 0
−1 0
0 1









, F =

[

0 0 −0.8057 0.0302
0 0 0.0349 −0.9844

]

.

The systemΣ = (A,B,C) has two zeros,λ = 0.89 and
λ = 1.03, andA has only stable eigenvalues. The unstable
zero-dynamics corresponding toλ = 1.03 are excited by
z0 = ǫ[0 0 − 0.72 0.69]⊤ with ǫ 6= 0. The respective
input signal is depicted in Figure 1. This attack is considered
in the examples below.

A. Modifying the output matrix C

Consider that the possible measurements can be used to
reveal zero-dynamics attacks

C3 =
[

0 0 0.2 0
]

C4 =
[

0 0 0 0.2
]

.
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Fig. 1. Unstable zero-dynamics attack applied to the system from t = 0s.

Applying the algorithm proposed in Section V-A we see
that addingC3 yields Y = V⋆ ∩ kerC3 = span([0 0 0 1]⊤),
which is not (A + BF )-invariant subspace and thus all
the zero-dynamics attacks toΣ are revealed. In fact̃Σ =
(A,B, C̃) with C̃ = [C⊤ C⊤

3 ]⊤ has no zeros. In this
particular example, addingC4 instead ofC3 would also
reveal all the zero-dynamics attacks.

B. Modifying the system matrix A

From Theorem 4 we have that any system perturbation of
the type

∆A =
[

∆ 0
]

with ∆ ∈ R
4×2 leaves all the zero-dynamics attacks stealthy.

In fact, note that(A + ∆A + BF )V⋆ ≡ (A + BF )V⋆

and therefore the zero-dynamics ofΣ and Σ̃ are identical.
Therefore such perturbations should be avoided.

On the other hand, the zero-dynamics change for pertur-
bations of the type

∆A =
[

0 ∆
]

.

For instance, adding an extra connection from tank3 to tank
1 corresponds to

∆A =









0 0 0.0397 0
0 0 0 0
0 0 −0.0402 0
0 0 0 0









.

The outcome of such perturbation can be seen in Figure 2
and Figure 3. The attack begins att = 0s with a initial
conditions mismatch, leading to a small increase in the output
energy as initially seen in Figure 3. The change to the system
dynamics occurs att = 100s and one immediately observes
a perturbation in the state trajectory. The extra coupling
between tanks3 and 1 changes the zero-dynamics of the
system and thus the current attack signal affects the water
level of tank1. As a result the attack is revealed in the output,
as illustrated in Figure 3.
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Fig. 2. State trajectories of the system under attack and active attack
detection.
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Fig. 3. Output energy of the system after connecting tank 3 totank 1 at
t = 100s.

C. Modifying the input matrix B

Consider the case where the uniform input scalingW =
0.987I is applied to the system. From the results in
Section V-C, all the zero-dynamics are revealed, since
ker (BF ) = ker ((1− α)BF ) and V⋆ ∩ ker(BF ) = ∅.
Moreover, as stated in Corollary 8 the scaling results in a
finite energy output sinceA is stable. The output energy
resulting from the attack an input scaling is depicted in
Figure 4. As before, the attack begins att = 0s with a
mismatch in the initial condition, resulting in a finite output
energy. The input scaling is applied att = 100s, which again
results in a finite increment of the output energy sinceA is
stable, as depicted in Figure 4.

VII. C ONCLUSIONS ANDFUTURE WORK

The problem of revealing zero-dynamics attacks on control
system was tackled. First we studied the effect of initial
condition mismatch in terms of the resulting increase in the
output energy. We concluded that for the subset of attacks
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Fig. 4. Output energy of the system after introducing the input scaling
BW = 0.987B at t = 100s.

exciting unstable zero-dynamics, this effect can be made
arbitrarily small while still affecting the system performance.
Then we addressed the problem of revealing zero-dynamics
attacks by modifying the system structure in terms of the
respective outputs, inputs, and dynamics. For changes in each
component, we provided necessary and sufficient conditions
for all attacks to be revealed. Furthermore, we provided an
algorithm to incrementally add measurements and thus reveal
attacks. We also proposed a coordinated scaling of the inputs
by the actuator and controller. For this particular change,we
quantified the resulting increase in output energy in terms of
the initial condition and scaling factor. Both these changes
on the inputs and outputs are able to reveal attacks while not
affecting the system performance when no attack is present.
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[11] A. Teixeira, D. Ṕerez, H. Sandberg, and K. Johansson, “Attack models
and scenarios for networked control systems,” inProceedings of the
1st international conference on High Confidence Networked Systems.
ACM, 2012, pp. 55–64.

[12] Y. Mo and B. Sinopoli, “Secure control against replay attack,” in
47th Annual Allerton Conference on Communication, Control, and
Computing, Oct. 2009.

[13] K. Zhou, J. C. Doyle, and K. Glover,Robust and Optimal Control.
Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1996.

[14] J. Tokarzewski,Finite zeros in discrete time control systems, ser.
Lecture notes in control and information sciences. Springer, 2006.

[15] G. Basile and G. Marro,Controlled and conditioned invariants in
linear system theory. Prentice Hall, 1992.

[16] S. Skogestad and I. Postlethwaite,Multivariable Feedback Control:
Analysis and Design. John Wiley & Sons, 1996.

[17] K. Johansson, “The quadruple-tank process: a multivariable laboratory
process with an adjustable zero,”IEEE Transactions on Control
Systems Technology, vol. 8, no. 3, pp. 456–465, May 2000.


