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Abstract. In this paper we consider a typical architecture for a net-
worked control system under false-data injection attacks. Under a previ-
ously proposed adversary modeling framework, various formulations for
quantifying cyber-security of control systems are proposed and formu-
lated as constrained optimization problems. These formulations capture
trade-offs in terms of attack impact on the control performance, attack
detectability, and adversarial resources. The formulations are then dis-
cussed and related to system theoretic concepts, followed by numerical
examples illustrating the various trade-offs for a quadruple-tank process.

Keywords: Security, Networked Control Systems, Impact Analysis

1 Introduction

Critical infrastructure security is of utmost importance in modern society and
has been a major concern in recent years. The increasing complexity of these
systems and the desire to improve their efficiency and flexibility has led to the
use of heterogeneous IT systems, which support the timely exchange of data
among and across different system layers, from the corporate level to the local
control level. Furthermore, IT infrastructures are composed of heterogeneous
components from several vendors and often use non-proprietary communication
networks. Therefore the amount of cyber threats to these IT infrastructures has
greatly increased over the past years, given their large number of possible attack
points across the system layers. There are several examples of cyber threats being
exploited by attackers to disrupt the behavior of physical processes, including
a staged attack on a power generator [10] and the recent Stuxnet virus attack
on centrifuges’ control system [16, 12]. Hence monitoring and mitigating cyber
attacks to these systems is crucial, since they may bring disastrous consequences
to society. This is well illustrated by recalling the consequences of the US-Canada
2003 blackout [19], partially due to lack of awareness in the control center.
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A particular type of complex cyber attack is that of false-data injection,
where the attacker introduces corrupted data in the communication network.
Several instances of this scenario have been considered in the context of control
systems, see [2, 4, 15] and references therein. In this paper we address stealthy
false-data injection attacks that are constructed so that they are not detected
based on the control input and measurement data available to anomaly detectors.
A sub-class of these attacks have been recently addressed from a system theoretic
perspective. In [14] the author characterizes the set of attack policies for covert
(stealthy) false-data injection attacks with detailed model knowledge and full
access to all sensor and actuator channels, while [11] described the set of stealthy
false-data injection attacks for omniscient attackers with full-state information,
but possibly compromising only a subset of the existing sensors and actuators.
Similarly, the work in [5] considers a finite time-interval and characterizes the
number of corrupted channels that cannot be detected during that time-interval.
In the previous approaches the control input and measurement data available to
the anomaly detector with and without the attack were the same, thus rendering
the attack undetectable. Instead in this paper we allow more freedom to the
adversary and consider attacks that may be theoretically detectable, but are
still stealthy since they do not trigger any alarm by the anomaly detector.

Contributions and outline

In this paper we consider the typical architecture for a networked control sys-
tem under false-data injection attacks and adversary models presented in [17].
Under this framework, various formulations for quantifying cyber-security of
control systems are proposed and formulated as constrained optimization prob-
lems. These formulations capture trade-offs in terms of impact on the control
system, attack detectability, and adversarial resources. In particular, one of the
formulations considers the minimum number of data channels that need to be
corrupted so that the adversary remains stealthy, similarly to the security in-
dex for static systems proposed in [13]. The formulations are related to system
theoretic concepts.

The outline of the paper is as follows. The control system architecture and
model are described in Section 2, followed by the adversary model in Section 3.
Different formulations quantifying cyber-security of control systems are intro-
duced in Section 4 for a given time-horizon and in Section 5 for steady-state. A
particular formulation is posed as a mixed integer linear program and illustrated
through numerical examples in Section 6, followed by conclusions in Section 7.

Notation and Preliminaries

Let x[k0, kf ] = {xk0
, xk0+1, . . . , xkf

} be a discrete-time signal in the time-
interval [k0, kf ] = {k0, . . . , kf} with xk ∈ R

n for k ∈ [k0, kf ]. For simplicity, we
also denote the time-domain signal of xk in vector form as x[k0, kf ] ∈ R

n(kf−k0+1),

with x[k0, kf ] = [x⊤
k0
, . . . , x⊤

kf
]⊤. When the time-interval at consideration is clear,

the short-form notation x will be used in place of x[k0, kf ].
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For y ∈ C
n, denote the p-norm of y as ‖y‖p ,

(
∑n

i=1 |y(i)|p
)1/p

for 1 ≤ p <

∞, where y(i) is the i-th entry of the vector y, and let ‖y‖∞ , maxi |y(i)|.
Additionally, we denote ‖y‖0 as the number of non-zero elements of y and define
S = {z ∈ C : |z| = 1} as the unit circle in the complex plane.

As for the discrete-time signal x, denote its ℓp-norm in the time-interval

[k0, kf ] as ‖x‖ℓp[k0, kf ] , ‖x[k0, kf ]‖p =
(

∑kf

k=k0
‖xk‖pp

)1/p

for 1 ≤ p < ∞, and

let ‖x‖ℓ∞[k0, kf ] , supk∈[k0, kf ] ‖xk‖∞.

For a given matrix G ∈ C
n×m, denote its Hermitian conjugate as GH and,

supposing G is full-column rank, let G† = (GHG)−1GH be its pseudo-inverse.

2 Networked Control System

In this section we describe the networked control system structure, where we
consider three main components as illustrated in Fig. 1: the physical plant and
communication network, the feedback controller, and the anomaly detector.

NetworkNetwork

ũk
yk

P

F

D

uk ỹk

‖rk‖ > δr + δα? ⇒ Alarm

Fig. 1. Schematic of networked control system.

2.1 Physical Plant and Communication Network

The physical plant is modeled in a discrete-time state-space form

P :

{

xk+1 = Axk +Bũk +Gwk + Ffk

yk = Cxk + vk
, (1)

where xk ∈ R
n is the state variable, ũk ∈ R

nu the control actions applied to the
process, yk ∈ R

ny the measurements from the sensors at the sampling instant
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k ∈ Z, and fk ∈ R
d is the unknown signal representing the effects of anomalies,

usually denoted as fault signal in the fault diagnosis literature [3]. The process
and measurement Gaussian noise, wk ∈ R

n and vk ∈ R
ny , represent the discrep-

ancies between the model and the real process, due to unmodeled dynamics or
disturbances, for instance, and we assume their means are respectively bounded
by δw and δv, i.e. w̄ = ‖E{wk}‖ ≤ δw and v̄ = ‖E{vk}‖ ≤ δv.

The physical plant operation is supported by a communication network
through which the sensor measurements and actuator data are transmitted,
which at the plant side correspond to yk and ũk, respectively. At the controller
side we denote the sensor and actuator data by ỹk ∈ R

ny and uk ∈ R
nu , respec-

tively. Since the communication network may be unreliable, the data exchanged
between the plant and the controller may be altered, resulting in discrepancies
in the data at the plant and controller ends. In this paper we do not consider the
usual communication network effects such as packet losses and delays. Instead
we focus on data corruption due to malicious cyber attacks, as described in Sec-
tion 3. Therefore the communication network per se is supposed to be reliable,
not affecting the data flowing through it.

Given the physical plant model (1) and assuming an ideal communication
network, the networked control system is said to have a nominal behavior if
fk = 0, ũk = uk, and ỹk = yk. The absence of either one of these condition
results in an abnormal behavior of the system.

2.2 Feedback Controller

In order to comply with performance requirements in the presence of the un-
known process and measurement noises, we consider that the physical plant is
controlled by an appropriate linear time-invariant feedback controller [20]. The
output feedback controller can be written in a state-space form as

F :

{

zk+1 = Aczk +Bcỹk

uk = Cczk +Dcỹk
(2)

where the states of the controller, zk ∈ R
nz , may include the process state

and tracking error estimates. Given the plant and communication network mod-
els, the controller is supposed to be designed so that acceptable performance is
achieved under nominal behavior.

2.3 Anomaly Detector

In this section we consider the anomaly detector that monitors the system to de-
tect possible anomalies, i.e. deviations from the nominal behavior. The anomaly
detector is supposed to be collocated with the controller, therefore it only has
access to ỹk and uk to evaluate the behavior of the plant.

Several approaches to detecting malfunctions in control systems are available
in the fault diagnosis literature [3, 6]. Here we consider the following observer-
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based fault detection filter

D :











x̂k+1|k = Ax̂k|k +Buk

x̂k|k = x̂k|k−1 +K(ỹk − Cx̂k|k−1)

rk = V (ỹk − ŷk|k)

, (3)

where x̂k|k ∈ R
n and ŷk|k = Cx̂k|k ∈ R

ny are the state and output estimates
given measurements up until time k, respectively, and rk ∈ R

nr the residue
evaluated to detect and locate existing anomalies. The previous filter dynamics
can be rewritten as

D :

{

x̂k+1|k = A(I −KC)x̂k|k−1 +Buk +AKỹk

rk = V [(I − CK)ỹk − (I − CK)Cx̂k|k−1].
(4)

The anomaly detector is designed by choosing K and V such that

1. under nominal behavior of the system (i.e., fk = 0, uk = ũk, yk = ỹk), the
expected value of rk converges asymptotically to a neighborhood of zero, i.e.,
limk→∞ E{rk} ∈ Bδr , with δr ∈ R

+ and Bδr , {r ∈ R
nr : ‖r‖p ≤ δr};

2. the residue is sensitive to the anomalies (fk 6≡ 0).

The characterization of Bδr depends on the noise terms and can be found in [3]
for particular values of p. Given the residue signal over the time-interval [d0, df ],
r[d0, df ], an alarm is triggered if

r[d0, df ] 6∈ U[d0, df ], (5)

where the set U[d0, df ] is chosen so that the false-alarm rate does not exceed a
given threshold α ∈ [0, 1]. This necessarily requires no alarm to be triggered
in the noiseless nominal behavior i.e., r[d0, df ] ∈ U[d0, df ] if for all k ∈ [d0, df ]
it holds that rk ∈ Bδr . For instance, one can take U[d0, df ] to be a bound on
the energy of the residue signal over the time-interval [d0, df ], resulting in
U[d0, df ] = {r : ‖r‖ℓ2[d0, df ] ≤ δ}.

3 Adversary Model

In this section we discuss the adversary models composed of adversarial goals
and the system dynamics under attack. In particular, we consider attack scenar-
ios where the adversary’s goal is to drive the system to an unsafe state while
remaining stealthy. Below we describe the networked control system under attack
with respect to the attack vector ak ∈ R

qa .

3.1 Networked Control System under Attack

The system components under attack are now characterized for the attack vec-
tor ak. Considering the plant and controller states to be augmented as ηk =
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[x⊤
k z⊤k ]⊤, the dynamics of the closed-loop system composed by P and F un-

der the effect of ak can be written as

ηk+1 = Aηk +Bak +G

[

wk

vk

]

ỹk = Cηk +Dak +H

[

wk

vk

]

,

(6)

where the system matrices are

A =

[

A+BDcC BCc

BcC Ac

]

, G =

[

G BDc

0 Bc

]

,

C =
[

C 0
]

, H =
[

0 I
]

,

and B and D capture how the attack vector ak affects the plant and controller.
Similarly, using P and D as in (1) and (4), respectively, the anomaly detector

error dynamics under attack are described by

ξk+1|k = Aeξk|k−1 +Beak +Ge

[

wk

vk

]

rk = Ceξk|k−1 +Deak +He

[

wk

vk

]

,

(7)

where ξk|k−1 ∈ R
n is the estimation error and

Ae = A(I −KC), Ge =
[

G −AK
]

,
Ce = V C(I −KC), He =

[

0 V (I − CK)
]

.

The matrices Be and De are specific to the available disruptive resources and
are characterized below for data deception attacks.

Data Deception Resources. The deception attacks modify the control ac-
tions uk and sensor measurements yk from their calculated or real values to
the corrupted signals ũk and ỹk, respectively. Denoting Ru

I ⊆ {1, . . . , nu} and
Ry

I ⊆ {1, . . . , ny} as the deception resources, i.e. set of actuator and sensor chan-
nels that can be affected, and |Ru

I | and |Ru
I | as the respective cardinality of the

sets, the deception attacks are modeled as

ũk , uk + Γubuk , ỹk , yk + Γ ybyk, (8)

where the signals buk ∈ R
|Ru

I | and byk ∈ R
|Ry

I
| represent the data corruption and

Γu ∈ B
nu×|Ru

I | and Γ y ∈ B
ny×|Ry

I
| (B , {0, 1}) are the binary incidence matri-

ces mapping the data corruption to the respective data channels. The matrices
Γu and Γ y indicate which data channels can be accessed by the adversary and
are therefore directly related to the adversary resources in deception attacks.
Recalling that a ∈ R

qa , the number of data channels that may be compromised
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by the adversary are given by qa = |Ru
I |+ |Ru

I |. Defining ak = [bu⊤k by⊤k ]⊤, the
system dynamics are given by (6) and (7) with

B =

[

BΓu BDcΓ
y

0 BcΓ
y

]

, D =
[

0 Γ y
]

,

Be =
[

BΓu −AKΓ y
]

, De =
[

0 V (I − CK)Γ y
]

.

3.2 Attack Goals and Constraints

In addition to the attack resources, the attack scenarios need to include the
adversary’s intent, namely the attack goals and constraints shaping the attack
policy. The attack goals can be stated in terms of the attack impact on the system
operation, while the constraints may be related to the attack detectability.

Several physical systems have tight operating constraints which if not sat-
isfied might result in physical damage to the system. In this work we use the
concept of safe sets to characterize the safety constraints.

Definition 1. For a given time-interval [k0, kf ], the system is said to be safe

if x[k0, kf ] ∈ S[k0, kf ], where S[k0, kf ] is a compact set with non-empty interior.

The above definition of safe set S[k0, kf ] allows one to consider both time-
interval and time-instant characterizations of safe regions, for instance signal
energy and safe regions of the state space, respectively.

Assumption 1. The system is in a safe state at the beginning of the attack, i.e.

x(−∞, k0−1] ∈ S(−∞, k0−1].

The physical impact of an attack can be evaluated by assessing whether or
not the state of the system remained in the safe set during and after the attack.
The attack is considered successful if the state is driven out of the safe set. For
simplicity of notation, the safe set S[k0, kf ] will be simply denoted as S whenever
the time-interval is not ambiguous. Moreover, the safe sets considered in the
remaining of this paper are of the form Sp

[k0, kf ]
= {x : ‖x‖ℓp[k0, kf ] ≤ 1}.

Regarding the attack constraints, we consider that attacks are constrained
to remain stealthy. Furthermore, we consider the disruptive attack component
consists of only physical and data deception attacks, and thus we have the attack
vector ak = [bu⊤k by⊤k ]⊤. Given the anomaly detector described in Section 2,
denoting a[k0, kf ] = {ak0

, . . . , akf
} as the attack signal, and recalling that the

residue signal r[k0, +∞) is a function of the attack signal, the set of stealthy
attacks are defined as follows.

Definition 2. The attack signal a[k0, kf ] is stealthy over the time-interval [k0, df ]
with df ≥ kf if r[k0, df ] ∈ U[k0, df ].

Note that the above definition is dependent on the initial state of the system
at k0, as well as the noise terms wk and vk. Furthermore, it also requires the
attack to be stealthy even after it has been performed, as df ≥ kf .
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Since the closed-loop system (6) and the anomaly detector (7) under linear
attack policies are linear systems, each of these systems can be separated into
two components, the nominal component with ak = 0 ∀k and the following
systems with zero initial conditions ηa0 = ξa0|0 = 0

ηak+1 = Aηak +Bak

ỹak = Cηak +Dak,
(9)

ξak|k = Aeξ
a
k−1|k−1 +Beak−1

rak = Ceξ
a
k−1|k−1 +Deak−1.

(10)

Assuming the system is behaving nominally before the attack and that, given
the linearity of (7), there exists a set Ua

[k0, df ]
, {r : ‖r‖ℓp[k0, df ] ≤ δα} such

that ra[k0, df ]
∈ Ua

[k0, df ]
⇒ r[k0, df ] ∈ U[k0, df ], we have the following definition:

Definition 3. The attack signal a[k0, kf ] is stealthy over the time-interval [k0, df ]
if ra[k0, df ]

∈ Ua
[k0, df ]

.

Albeit more conservative than Definition 2, this definition only depends on
the attack signals a[k0, kf ]. Similarly, the impact of attacks on the closed-loop
system can also be analyzed by looking at the linear system (9).

4 Quantifying Cyber-Security: Transient Analysis

As mentioned in Section 3.2, the adversary aims at driving the system to an
unsafe state while remaining stealthy. Additionally we consider that the adver-
sary also has resource constraints, in the sense that only a small number of
attack points to the system are available. In the following, several formulations
for quantifying cyber-security of networked control systems are discussed.

Consider the dynamical system in (9) and the time-interval [0, N ] with
d0 = k0 = 0 and kf = df = N . Defining n = [η⊤0 . . . η⊤N ]⊤, a = [a⊤0 . . . a⊤N ]⊤,
and y = [y⊤0 . . . y⊤N ]⊤, the state and output trajectories can be described by
the following mappings

n = Oηη0 + Tηa
y = Cηn+Dηa,

(11)

where

Oη =















I
A

A2

...
AN















, Tη =















D 0 . . . 0
B 0 . . . 0
AB B . . . 0
...

...
. . . 0

AN−1B AN−2B . . . B















,

Cη = IN+1 ⊗C, Dη = IN+1 ⊗D

(12)

Similarly for (10), defining e = [ξ⊤−1|−1 . . . ξ⊤N−1|N−1]
⊤, r = [r⊤0 . . . r⊤N ]⊤ yields

e = Oξξ−1|−1 + Tξa
r = Cξe+Dξa.

(13)
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Recall that the system is operating safely during the time-interval [k0, kf ] if
x ∈ S[k0, kf ]. Supposing Sp

[k0, kf ]
= {x : ‖x‖ℓp[k0, kf ] ≤ 1} for p ≥ 1, the system

is safe during the time-interval {0, 1, . . . , N} if

x , Cxn ∈ Sp
[0, N ], (14)

where Cx = IN+1 ⊗ [In 0]. In particular, for p = ∞ we have that the system is
safe if ‖x‖∞ = ‖Cxn‖∞ ≤ 1.

4.1 Maximum-Impact Attacks

One possible way to quantify cyber-security is by analyzing the impact of attacks
on the control system, given some pre-defined resources available to the adver-
sary. Recalling the safe set introduced earlier, Sp

[0, N ] = {x : ‖x‖ℓp[0, N ] ≤ 1},
the attack impact during the time-interval [0, N ] is characterized by

gp(n) =

{‖Cxn‖p , if Cxn ∈ Sp
[0, N ]

+∞ , otherwise,
(15)

since the adversary aims at driving the system to an unsafe state. Similarly, recall
the set of stealthy attacks a such that r ∈ Ua

[k0, df ]
, {r : ‖r‖ℓp[k0, df ] ≤ δα}.

The attack yielding the maximum impact can be computed by solving

max
a

gp(n)

s.t. ‖Cξe+Dξa‖q ≤ δα,

e = Oξξ−1|−1 + Tξa,
n = Oηη0 + Tηa,

(16)

with p and q possibly different. Given the objective function gp(n), the adver-
sary’s optimal policy is to drive the system to an unsafe state while keeping
the residue below the threshold. When the unsafe state is not reachable while
remaining stealthy, the optimal attack drives the system as close to the unsafe
set as possible by maximizing ‖x‖ℓp[0, N ] = ‖Cxn‖p.

Letting ξ−1|−1 = 0 and η0 = 0, the optimal values of (16) can be characterized
by analyzing the following modified problem

max
a

‖Txa‖p

s.t. ‖Tra‖q ≤ δα,

(17)

where Tx = CxTη and Tr = CξTξ +Dξ. The conditions under which (17) admits
bounded optimal values are characterized in the following result.

Lemma 1. The problem (17) is bounded if and only if ker(Tr) ⊆ ker(Tx).
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Proof. Suppose that ker(Tr) 6= ∅ and consider the subset of solutions where
a ∈ ker(Tr). For this subset of solutions, the optimization problem then becomes
max

a∈ker(Tr) ‖Txa‖p. Since the latter corresponds to a maximization of a convex
function, its solution is unbounded unless Txa = 0 for all a ∈ ker(Tr) i.e.,
ker(Tr) ⊆ ker(Tx). For a 6∈ ker(Tr) the feasible set is compact and thus the
objective function over the feasible set is bounded, which concludes the proof.

Supposing that the optimization problem (17) is bounded and p = q = 2, (17)
can be rewritten as a generalized eigenvalue problem and solved analytically.

Theorem 1. Let p = q = 2 and suppose that ker(Tr) ⊆ ker(Tx). The optimal

attack policy for (17) is given by

a⋆ =
δα

‖Trv⋆‖2
v⋆, (18)

where v⋆ is the eigenvector associated with λ∗, the largest generalized eigenvalue

of the matrix pencil
(

T ⊤
x Tx, T ⊤

r Tr
)

. Moreover, the corresponding optimal value

is given by ‖Txa⋆‖2 =
√
λ∗δα.

Proof. The proof is similar to that of [17, Thm. 12].

Given the solution to (17) characterized by the previous result, the maximum
impact with respect to (16) is given by

gp(Txa⋆) =
{√

λ∗δα , if
√
λ∗δα ≤ 1

+∞ , otherwise.

4.2 Minimum-Resource Attacks

Cyber-security of control systems can also be quantified by assessing the number
of resources needed by the adversary to perform a given set of attacks, without
necessarily taking into account the attack impact, as formulated below.

Consider the set of attacks G such that a ∈ G satisfies the goals of a given
attack scenario. Recall that ak ∈ R

qa for all k ∈ [k0, kf ] and denote a(i), [k0, kf ] =
{a(i),k0

, . . . , a(i),kf
} as the signal corresponding to the i−th attack resource.

Consider the function

hp(a) = [‖a(1)‖ℓp . . . ‖a(qa)‖ℓp ]⊤ (19)

with 1 ≤ p ≤ +∞. The number of resources employed in a given attack are
‖hp(a)‖0. For the set of attacks G, the minimum-resource attacks are computed
by solving the following optimization problem

min
a

‖hp(a)‖0

s.t. ‖Cξe+Dξa‖q ≤ δα,

e = Oξξ−1|−1 + Tξa,
a ∈ G.

(20)
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Although the set G may be chosen depending on the attack impact gp(n), i.e.,
G = {a : gp(n) = ‖Txa‖ℓp > γ}, this generally results in non-convex constraints
that increase the computational complexity of the problem. As an example, the
set G = {a : ‖Txa‖ℓ∞ > γ} is formulated as a set of linear constraints with
binary variables in (35). However, G might not be directly related to the impact
of the attack in terms of gp(n). For instance, the formulation (20) captures the
security-index proposed for static systems in [13], where the adversary aims at
corrupting a given measurement i without being detected. The security-index
formulation is retrieved by having ξ−1|−1 = 0, N = 0, δα = 0, and G = {a ∈
R

qa : a(i) = 1}. However, for dynamic systems when N > 0, the specification
of the attack scenario and corresponding set of attacks G is more involved. The
same scenario where the adversary aims at corrupting a given channel i can be
formulated by having δα = 0 and G = {a : ‖a(i)‖ℓp = ǫ}. However, for positive
values of δα the feasibility of the problem depends on both δα and ǫ, which need
to be carefully chosen.

The optimization problem (20) is also related to the estimation of sparse
unknown-input signals. For instance, the ℓ1/ℓq decoder proposed in [5] relaxes (20)
using a ℓ1/ℓq-norm regularization [8] and can be obtained by having p ≥ 1 and
solving the following modified problem for given r

min
a, ξ−1|−1

‖hp(a)‖1

s.t. r = Cξe+Dξa,
e = Oξξ−1|−1 + Tξa

The optimal solution a⋆ and ξ⋆−1|−1 can then be used reconstruct the state

trajectory according to (9). However, note that using ‖hp(a)‖1 as the objective
function instead of ‖hp(a)‖0 may lead to substantially different solutions, since
‖hp(a)‖1 mixes the time and physical dimensions of the attack signal. In fact,
letting p = 1 so that ‖hp(a)‖1 = ‖a‖1 and supposing the number of available
channels is given by qa = 2 and N = 1, having a = [a⊤(1) a

⊤
(2)]

⊤ = [1 0 0 1] leads

to ‖hp(a)‖1 = ‖hp(a)‖0 = 2 and corrupts two channels, while a = [1 1 0 0]⊤

yields ‖hp(a)‖1 = 2 and ‖hp(a)‖0 = 1, thus corrupting only one channel. These
attacks are significantly different in terms of adversarial resources, as corrupting
two channels requires much larger effort than corrupting only one.

4.3 Maximum-Impact Minimum-Resource Attacks

The previous formulations considered impact and resources independently when
quantifying cyber-security. Here the impact and resources and addressed simul-
taneously by considering the multi-objective optimization problem

max
a

[gp(n), −‖hp(a)‖0]⊤

s.t. ‖Cξe+Dξa‖q ≤ δα,

e = Oξξ−1|−1 + Tξa,
n = Oηη0 + Tηa.

(21)
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The vector-valued objective function indicates that the adversary desires to si-
multaneously maximize and minimize gp(n) and ‖hp(a)‖0, respectively. Solutions
to multi-objective problems are related to the concept of Pareto optimality [9]
and correspond to the optimal trade-off manifold between the several objec-
tives. These solutions can be obtained through several techniques, for instance
the bounded objective function method in which all but one of the objectives are
posed as constraints, thus obtaining a scalar-valued objective function. Applying
this method to (21) and constraining ‖hp(a)‖0 yields

max
a

gp(n)

s.t. ‖Cξe+Dξa‖q ≤ δα,

e = Oξξ−1|−1 + Tξa,
n = Oηη0 + Tηa,
‖hp(a)‖0 < ǫ,

(22)

which can be interpreted as a maximum-impact resource-constrained attack pol-
icy. The Pareto frontier that characterizes the optimal trade-off manifold can be
obtained by iteratively solving (22) for ǫ ∈ {1, . . . , qa}. This approach is illus-
trated in Section 6 for the quadruple-tank process.

5 Quantifying Cyber-Security: Steady-State Analysis

Here we consider the steady-state of the system under attack. Let z ∈ C and
define

Gxa(z) = [In 0](zI −A)−1B+D,

Gra(z) = Ce(zI −Ae)
−1Be +De,

(23)

which correspond to the transfer functions from ak to xk and rk respectively.
Considering exponential attack signals of the form ak = gzk for fixed z, denote
a(z) = g ∈ C

qa , x(z) = Gxa(z)a(z), and r(z) = Gra(z)a(z) as the phasor
notation of ak, xk, and rk, respectively. Since the analysis in this section is
restricted to steady-state, we consider z to be on the unit circle, z ∈ S, and
thus a(z) corresponds to sinusoidal signals of constant magnitude. Defining the
frequency-domain safe set as Sp

∞ = {x ∈ C
n : ‖x‖p ≤ 1}, the system under

attack is said to be safe at steady-state if x(z) = Gxa(z)a(z) ∈ Sp
∞.

5.1 Maximum-Impact Attacks

For a given z ∈ S, the steady-state attack impact is characterized by

gp(x(z)) =

{

‖x(z)‖p , if x(z) ∈ Sp
∞

+∞ , otherwise.
(24)

Similarly, recall the set of steady-state stealthy attacks a(z) such that r(z) ∈
Ua , {r ∈ C

pd : ‖r‖p ≤ δα}, where r(z) = Gra(z)a(z).
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The attack yielding the maximum impact can be computed by solving

sup
z∈S

max
a(z)

gp(Gxa(z)a(z))

s.t. ‖Gra(z)a(z)‖p ≤ δα.

(25)

The maximum impact over all stealthy attacks can be computed by replacing
the objective function gp(Gxa(z)A(z)) with ‖Gxa(z)a(z)‖p, solving

sup
z∈S

max
a(z)

‖Gxa(z)a(z)‖p

s.t. ‖Gra(z)a(z)‖q ≤ δα,

(26)

and evaluating gp(Gxa(z)a(z)) for the obtained solution. The conditions under
which (26) admits bounded optimal values are characterized as follows.

Lemma 2. The optimization problem (26) is bounded if and only if ker(Gra(z)) ⊆
ker(Gxa(z)) for all z ∈ S.

Proof. The proof follows the same reasoning as that of Lemma 1.

The previous statement is related to the concept of invariant-zeros of dynam-
ical systems [18] as discussed below.

Definition 4. Consider a linear time-invariant system in discrete-time with the

state-space realization (A,B,C,D) and the equation
[

zI −A −B
C D

] [

x0

uz

]

=

[

0
0

]

, (27)

with z ∈ C and x0 6= 0. For a given solution to the previous equation (z, uz, x0),
denote z as the invariant-zero, uz as the input-zero direction, and x0 as the

state-zero direction.

Lemma 3. The optimization problem (26) is bounded if and only if either of

the following hold:

1. the transfer function Gra(z) does not contain invariant-zeros on the unit

circle;

2. all the invariant-zeros of the transfer function Gra(z) on the unit circle are

also invariant-zeros of Gxa(z), with the same input-zero direction.

Proof. For the first statement, note that if Gra(z) does not contain invariant-
zeros on the unit circle, then ker(Gra(z)) = ∅ for z ∈ S and thus (26) is bounded.
As for the second statement, suppose that Gra(z) contains an invariant-zero
z̄ ∈ S and recall that (Ae, Be, Ce, De) is the state-space realization of Gra(z).
Applying the Schur complement to (27) we see that, for a non-zero state-zero
direction x0, (27) can be rewritten as

(z̄I −Ae)x0 −Beuz = 0,

Cex0 +Deuz = 0.
(28)
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Since Ae is stable and |z̄| = 1 we have that z̄I − Ae is invertible and thus (28)
can be rewritten as

(

Ce(z̄I −Ae)
−1Be +De

)

uz = Gra(z̄)uz = 0. Hence we
conclude that the input-zero direction uz lies in the null-space of Gra(z̄). In this
case, applying Lemma 2 shows that the problem is bounded if and only if uz

also lies in the null-space of Gxa(z̄), which concludes the proof.

Supposing that the optimization problem (26) is bounded and p = 2, (26)
can be rewritten as a generalized eigenvalue problem and solved analytically.

Theorem 2. Let p = q = 2 and suppose that ker(Gra(z)) ⊆ ker(Gxa(z)) for

all z ∈ S. The optimal maximum-impact attack policy is given by

a⋆(z⋆) =
δα

‖Gra(z⋆)v⋆‖2
v⋆, (29)

where v⋆ is the eigenvector associated with λ∗, the largest generalized eigen-

value of the matrix pencil
(

GH
xa(z)Gxa(z), G

H
ra(z)Gra(z)

)

maximized over z ∈ S.

Moreover, the corresponding impact is given by ‖Gxa(z
⋆)a⋆(z⋆)‖2 =

√
λ∗δα.

Proof. The proof is similar to that of [17, Thm. 12].

Given the solution to (26) characterized by the previous result, the maximum
impact with respect to (25) is given by

gp(Gxa(z
⋆)a⋆(z⋆)) =

{√
λ∗δα , if

√
λ∗δα ≤ 1

+∞ , otherwise.

Theorem 3. Supposing Gra(z) is left-invertible for all z ∈ S, the largest gener-

alized eigenvalue of the matrix pencil
(

GH
xa(z)Gxa(z), G

H
ra(z)Gra(z)

)

, λ⋆(z⋆),
maximized over z⋆ ∈ S corresponds to the H∞-norm of Gxa(z)G

†
ra(z) with

G†
ra(z) =

(

GH
ra(z)Gra(z)

)−1
GH

ra(z).

Proof. First observe that ker (Gra(z)) = ∅, since Gra(z) is left-invertible for all
z ∈ S. Letting δα = 1, from Theorem 2 we then have that

λ⋆(z⋆) = sup
z∈S

max
a(z): ‖Gra(z)a(z)‖2=1

‖Gxa(z)a(z)‖2.

The proof concludes by noting that, since Gra(z) is left-invertible and Gxa(z)
and Gra(z) are stable, we have a(z) = G†

ra(z)b(z) for some b(z) ∈ C
nr and so

λ⋆(z⋆) can be rewritten as

λ⋆(z⋆) = sup
z∈S

max
b(z): ‖b(z)‖2=1

‖Gxa(z)G
†
ra(z)b(z)‖22 , ‖Gxa(z)G

†
ra(z)‖∞.

5.2 Minimum-Resource Attacks

Consider the set of attacks G such that a(z) ∈ G satisfies the goals of a given
attack scenario. For the set of attacks G, the minimum-resource steady-state
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attacks are computed by solving the following optimization problem

inf
z∈S

min
a(z)

‖a(z)‖0

s.t. ‖Gra(z)a(z)‖q ≤ δα,

a(z) ∈ G.

(30)

As in the security-index formulation for a given channel i [13], one can define
G , {a(z) ∈ C

qa : a(i)(z) = 1}.

5.3 Maximum-Impact Minimum-Resource Attacks

Similarly as for the transient analysis, the impact and adversarial resources can
be treated simultaneously in the multi-objective optimization problem

sup
z∈S

max
a(z)

[gp(Gxa(z)a(z)), −‖a(z)‖0]⊤

s.t. ‖Gra(z)a(z)‖q ≤ δα.

(31)

Using the bounded objective function method [9], the Pareto frontier can be
obtained by iteratively solving the following problem for ǫ ∈ {1, . . . , qa}

sup
z∈S

max
a(z)

gp(Gxa(z)a(z))

s.t. ‖Gra(z)a(z)‖q ≤ δα,

‖a(z)‖0 < ǫ.

(32)

6 Computational Algorithms and Examples

In this section the maximum-impact resource-constrained formulation proposed
in the transient analysis with p = ∞ is formulated as a mixed integer linear
programming problem. Numerical examples are also presented to illustrate some
of the proposed formulations for quantifying cyber-security of control systems.

6.1 Mixed Integer Linear Programming

Consider the maximum-impact resource-constrained formulation from the tran-
sient analysis (22) reproduced below

max
a

gp(n)

s.t. ‖Cξe+Dξa‖p ≤ δα,

‖hp(a)‖0 ≤ ǫ,
e = Oξξ−1|−1 + Tξa,
n = Oηη0 + Tηa.
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For 1 ≤ p ≤ ∞, the constraint ‖hp(a)‖0 ≤ ǫ models the fact that the number
of channels the adversary can compromise is upper bounded by epsilon. By
introducing the binary decision variables zi, one for each channel, the constraint
can be modeled as follows:

a(i) ≤ Mhzi1 ∀ i = 1, . . . , qa
−a(i) ≤ Mhzi1 ∀ i = 1, . . . , qa
qa
∑

i=1

zi ≤ ǫ

zi ∈ {0, 1} ∀ i = 1, . . . , qa.

(33)

In (33), 1 is a vector of ones of appropriate dimension. Mh is a given large
number used to model “infinity”. Its value is typically chosen according to the
physical limitation of the system. The binary decision variables zi serve to count
the number of channels the adversary can compromise. That is, zi = 1 if and only
if channel i can be compromised. Once a channel is compromised, the adversary
is expected to be able to modify the time signal in that channel in any way he
desires. This is modeled by the first two sets of constraints in (33).

In the constraint ‖Cξe+Dξa‖p ≤ δα, the ℓp norm is chosen to be the ℓ∞
norm modeling a constraint on the worst case output violation. This constraint
can be modeled as

Cξe+Dξa ≤ δα1
−Cξe−Dξa ≤ δα1.

(34)

In the objective function gp(n), the safety set Sp is chosen to be a ℓ∞ norm
ball. That is, Cxn ∈ Sp if and only if ‖Cxn‖∞ ≤ MS for some given safety
tolerance MS . This is to model the fact that if any component of Cxn is too
large, then the system is considered to be unsafe. Consequently, the adversary’s
goal is to maximize gp(n) so that at least one component of Cxn is larger than
the safety tolerance MS . In hypograph form [1], maximizing gp(n) amounts to
maximizing a slack variable γ with the additional constraint that gp(n) ≥ γ.
The later constraint can be modeled as

Cxn ≥ +γ1−MCx
(1− z+)

Cxn ≤ −γ1+MCx
(1− z−)

z+i + z−i ≤ 1 ∀ i
∑

i

(

z+i + z−i
)

≥ 1

z+i ∈ {0, 1} ∀ i
z−i ∈ {0, 1} ∀ i.

(35)

In (35), MCx
is another given large number used to represent “infinity”. For

each i, when the binary decision variable z+i = 1, the ith constraint of Cxn ≥
γ1 − MCx

(1− z+) implies that the ith component of Cxn is greater than or
equal to γ. On the other hand, if z+i = 0 then this constraint component can
be ignored. A similar interpretation holds for the combination of z− and Cxn ≤
−γ1 +MCx

(1 − z−). Furthermore, the constraint z+i + z−i ≤ 1 models the fact
that the ith component of Cxn cannot be both greater than γ and less than −γ
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when γ > 0. Together with the above discussion, the constraint
∑

i

(

z+i + z−i
)

≥ 1

indicates that at least one component of Cxnmust be greater than or equal to γ in
absolute value. Since the objective is to maximize γ, it holds that γ = ‖Cxn‖∞
at optimality. Finally, to model the fact that once the goal ‖Cn‖∞ > MS is
achieved the adversary no longer needs to maximize γ. An additional constraint

γ ≤ MS (36)

can be imposed.

In conclusion, the maximum-impact resource-constrained attack can be mod-
eled by the following mixed integer linear program:

max
a,γ,z,z+,z−

γ

s.t. e = Oξξ−1|−1 + Tξa,
n = Oη0

η0 + Tηa,
(33), (34), (35), (36).

(37)

6.2 Numerical Example

Next we illustrate some of the proposed formulations for the Quadruple-Tank
Process (QTP) illustrated in Fig. 2. The plant model can be found in [7]

y1 y2

ũ1 ũ2

γ1 γ2

h1 h2

h3 h4

Fig. 2. Schematic of the Quadruple-Tank Process.
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ḣ1 = − a1
A1

√

2gh1 +
a3
A1

√

2gh3 +
γ1k1
A1

u1,

ḣ2 = − a2
A2

√

2gh2 +
a4
A2

√

2gh4 +
γ2k2
A2

u2,

ḣ3 = − a3
A3

√

2gh3 +
(1− γ2)k2

A3
u2,

ḣ4 = − a4
A4

√

2gh4 +
(1− γ1)k1

A4
u1,

(38)

where hi are the heights of water in each tank, Ai the cross-section area of the
tanks, ai the cross-section area of the outlet hole, ki the pump constants, γi the
flow ratios and g the gravity acceleration. The nonlinear plant model is linearized
for a given operating point and sampled with a sampling period Ts = 2 s. The
QTP is controlled using a centralized LQG controller with integral action and
a Kalman-filter-based anomaly detector is used so that alarms are triggered
according to (5), for which we chose δα = 0.25 for illustration purposes.

For the time-interval [0, 50], the maximum-impact minimum-resource at-
tacks were computed for the process in minimum and non-minimum phase set-
tings by iteratively solving (22) with p = q = 2. The respective impacts are
presented in Table 1. As expected, the non-minimum phase system is less re-

Table 1. Values of ‖x‖p for the maximum-impact formulation with p = q = 2 and
δα = 0.15.

‖hp(a)‖0
1 2 3 4

Minimum phase 1.15 140.39 ∞ ∞
Non-minimum phase 2.80 689.43 ∞ ∞

silient than the minimum-phase one. In both settings the attack impact can be
made arbitrarily large by corrupting 3 or more channels and thus the adversary
can drive the state out of the safe set while remaining stealthy.

The maximum-impact attack signal for the non-minimum phase system with
ǫ = 2, δα = 0.15, and p = q = 2 is presented in Fig. 3(a). For the parameters
ǫ = 2, δα = 0.025, and p = q = ∞, the maximum-impact attack signal was com-
puted using the mixed-integer linear programming problem (37) and is shown
in Fig. 3(b). In both cases the optimal attack corrupts both actuator channels
and ensures ‖r‖ℓp ≤ δα.

7 Conclusions

Several formulations for quantifying cyber-security of networked control systems
were proposed and formulated as constrained optimization problems, capturing
trade-offs among adversary goals and constraints such as attack impact on the
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(a) Parameters: p = q = 2, δα = 0.15.
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Fig. 3. Simulation results of the multi-objective problem (22) with ǫ = 2 for the non-
minimum phase system.

control system, attack detectability, and adversarial resources. Although the
formulations are non-convex, some can be related to system theoretic concepts
such as invariant-zeros and weighted H∞ norm of the closed-loop system and
thus may be solved efficiently. The maximum-impact resource-constrained attack
policy was also formulated as a mixed-integer linear program for a particular
choice of parameters. The results were illustrated for the quadruple-tank process.
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