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Abstract— A malicious attacker with access to the sensor
channel in a feedback control system can severely affect the
physical system under control, while simultaneously being hard
to detect. A properly designed anomaly detector can restrict
the impact of such attacks, however. Anomaly detectors with
an internal state (stateful detectors) have gained popularity
because they seem to be able to mitigate these attacks more than
detectors without a state (stateless detectors). In the analysis
of attacks against control systems with anomaly detectors, it
has been assumed that the attacker has access to the detector’s
internal state, or designs its attack such that it is not detected
regardless of the detector’s state. In this paper, we show how an
attacker can realize the first case by breaking the confidentiality
of a stateful detector state evolving with linear dynamics, while
remaining undetected and imitating the statistics of the detector
under nominal conditions. The realization of the attack is
posed in a convex optimization framework using the notion
of Kullback-Leibler divergence. Further, the attack is designed
such that the maximum mean estimation error of the Kalman
filter is maximized at each time step by exploiting dual norms.
A numerical example is given to illustrate the results.

I . I N T RO D U C T I O N

Utilizing communication networks to reduce the cost and
increase the efficiency in control systems has created so
called cyber-physical systems (CPSs). CPS are not limited to
industrial processes but include also critical infrastructures
such as the power grid and water distribution grids. Due to
the communication networks CPSs are faced with the threat
of cyber-attacks.

Therefore, an investigation in control-theoretic methods
to enhance the security of CPS has begun in recent years.
These control-theoretic methods can be seen as an additional
layer to the information technology related security measures
such as cryptography and authentication. Using watermarking
of control or sensor signals to improve the security of CPS
is a common approach. Watermarking is both used as an
additive [1] and a multiplicative [2] signal. Furthermore,
Hespanhol et al. [3] use watermarking in networked control
systems to detect the presence of attacks. Another research
direction deals with the estimation of the possible attack
impact. Milošević et al. [4] proposes a unifying framework
for several attack strategies and estimating their impact on
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discrete-time deterministic linear systems, while [5] defines
the identifiability and detectability of attacks on CPS.

Anomaly detectors have recently gained more interest in
the research community. Typically detectors are used to detect
randomly occurring faults in a system, but their abilities to
detect attacks or mitigate the impact of attacks that avoid
detection become more important. Investigating new anomaly
detectors such as hybrid detectors [6] is of equal importance
as determining the performance of commonly used anomaly
detector under attack, where our work focuses on the latter.
Commonly used anomaly detectors that have been investi-
gated recently are the χ2, cumulative sum (CUSUM) [7],
and the multivariate exponentially weighted moving average
(MEWMA) [8] detector. Detectors such as the CUSUM
and MEWMA detector have internal states, which seems to
benefit the attack impact mitigation. A metric to compare the
detector performance in the presence of attacks is introduced
by Urbina et al. [9] and based on the mean time between
false alarms and the impact of an undetectable attack on the
system. Murguia et al. [10] investigate full sensor attacks on
control systems equipped with χ2 or CUSUM detectors and
propose tuning methods for these detectors. In our previous
work [11] we investigate the impact of full sensor attacks
on control systems with a general anomaly detector model,
which includes the χ2, CUSUM, and MEWMA detector.
Furthermore, we propose an extension of the metric in [9]
for the case of full sensor attacks in [11], where the attacker
has no knowledge of the internal state of the detector.

Often it is assumed that the attacker has knowledge of the
detector’s state to determine a worst-case attack impact, e.g.
in [9], [10], or the attacker designs its attack such that it is not
detected irrespectively of the detector’s state [11]. Therefore
we investigate the confidentiality of the internal state of an
anomaly detector in this paper.

Our contribution is threefold. First, we show how an
undetectable attack is able to break the confidentiality of the
internal state of a detector that evolves with linear dynamics,
which include for example the MEWMA detector and also the
generalized MEWMA detector [12]. Second, not only is the
confidentiality broken, but the attacker is also able to imitate
the statistics of the detector under nominal condition by
utilizing the Kullback-Leibler divergence. Last, we show how
the attack can be designed, such that the mean of the Kalman
filter’s estimation error is maximized at each time step. This
method of breaking the detector state’s confidentiality is
verified for a MEWMA detector.

The rest of the paper has the following structure. The CPS,
anomaly detector, and attacker model used in our work is
presented in Section II. The method how an attacker can break



Fig. 1. Block Diagram of the Attack Scenario

the confidentiality is presented in Section III and applied to
the MEWMA detector in Section IV. To verify our results
a numerical example for the MEWMA detector is given in
Section IV as well. Our work concludes in Section V with
an outlook on possible future directions.

I I . S Y S T E M M O D E L

In this section, we explain the attack scenario considered in
this paper. In this scenario, a plant is controlled over wireless
networks and the controller side of the system is equipped
with an anomaly detector. An attacker managed to penetrate
the sensor network. Figure 1 shows the block diagram of the
attack scenario, which we describe in detail in this section.

A. Plant and Controller Model

Due to the connection with a wireless network we model
the plant and the controller as linear discrete-time systems.
The plant dynamics are given by

x(k+1) = Ax(k)+Bũ(k)+w(k) (1)
y(k) =Cx(k)+ v(k), (2)

where x(k) ∈ Rnx is the state of the plant, ũ(k) ∈ Rnu is the
control input received over the network and y(k) ∈Rny is the
measurement signal of the plant, all at time step k ∈N≥0. The
system matrix is given by A ∈Rnx×nx , while B ∈Rnx×nu , and
C ∈ Rny×nx describe the influence of the input on the state
and define the measurements taken, respectively. The states
of the plant have an additive process noise w(k)∼N (0,Σw),
while the measurements have an additive measurement noise
v(k)∼N (0,Σv). The initial state is x(0)∼N (0,Σx). Here,
Σw ∈ Rnx×nx , Σv ∈ Rny×ny , and Σx ∈ Rnx×nx are positive
definite covariance matrices, respectively, and these white
Gaussian processes are mutually independent. The controller
is designed as a linear quadratic Gaussian controller

x̂(k+1) = Ax̂(k)+Bu(k)+L(k)(ỹ(k)−Cx̂(k)) (3)
u(k) =−Kx̂(k), (4)
r̃(k) = ỹ(k)−Cx̂(k), (5)

where x̂(k) ∈ Rnx is the Kalman filter’s estimate of x(k),
x̂(0) = 0, u(k) ∈ Rnu is the actuator signal determined by
the controller, L(k) is the Kalman gain, K is the controller
gain, which is designed such that ρ(A− BK) < 1, where
ρ(A) is the spectral radius of matrix A, r̃(k) is the residual,
which is the difference between the received measurements

ỹ(k) ∈Rny over the network and the estimated system output
Cx̂(k). In the case of no attack, the residual is an independent
Gaussian random variable with r̃(k) ∼N (0,Σr(k)), where
Σr(k) ∈ Rny×ny is a positive definite covariance matrix.

Assumption 1: The system has reached steady state before
the attack happens, such that L(k) = L and Σr(k) = Σr, where
L = limk→∞ L(k) and Σr = limk→∞ Σr(k) are the steady state
values of the Kalman gain and the residual covariance matrix,
respectively. For the steady steady state values to exists, we

further assume (A,C) is detectable and (A,Σ
1
2
w) is controllable.

Further, the network works perfectly except for the attack.
Hence, ũ(k) = u(k), while ỹ(k) 6= y(k) due to the attack.

With this assumption we define r(k) = Σ
− 1

2
r r̃(k) as the

normalized residual signal, where r(k) ∼ N (0, I) in the
nominal case, i.e. when y(k) = ỹ(k).

B. Anomaly Detectors

Anomaly detectors in control systems are typically used to
detect randomly occuring faults in the plant [13]. The detector
can be described by a possibly nonlinear discrete-time system

xD(k+1) = θ
(
xD(k),r(k)

)
,

S(k+1) = d
(
xD(k),r(k)

)
,

(6)

where xD(k)∈RnD is the internal state of the detector, which
is initialized as a zero vector, S(k+1) ∈ R≥0 can be seen as
the output of the detector, and r(k) is the input to the detector.
Here, θ

(
xD(k),r(k)

)
describes the dynamics of the detector

state, and d
(
xD(k),r(k)

)
the output behaviour of the detector.

If the detector has no internal state, we call it stateless, and
stateful otherwise.

A small S(k + 1), i.e. S(k + 1) ≈ 0, indicates that no
anomalies are present. If S(k + 1) > JD, where JD ≥ 0, an
alarm is triggered. In case no fault or intruder is present, we
call it a false alarm. To avoid too many false alarms the
detector threshold JD has to be tuned accordingly. However,
when tuning JD there is a trade-off between the detection
and false alarm rate one has to consider, while when there
are attacks present one should also consider the impact
of undetectable attacks when tuning JD [9]. Typically, JD
is chosen such that rarely any false alarm happens. This
means that the operator will not be suspicious if there are no
alarms happening for a longer period of time. However, the
trajectory of S(k) is displayed in the control center, such
that an operator could recognize suspicious behaviour by
examining the displayed trajectory. This can also lead to
the detection of the attacker and is represented as the human
observer in Figure 1.

Assumption 2: The following conditions hold for the de-
tector

1)d
(
xD(k),r(k)

)
is continuous in xD(k) and r(k),

2)S(k+1) = d
(
xD(k),0

){< S(k) if xD(k) 6= 0
= 0 if xD(k) = 0

,

3)xD(k)→ 0 for k→ ∞, if r(k) = 0 ∀k,
4)Set xD(k) = 0, if S(k)> JD.

The second and third condition are needed to guarantee that
if we have perfect predictions of the received measurements,



i.e. r(k) = 0, the detector state and output will approach zero
without causing a false alarm. The fourth condition means
that the detector is reset to its initial state, when an alarm
has been triggered. Recall that a small detector output shows
the operator that the system is behaving nominally.

Detectors that follow (6) and fulfil Assumption 2 are for
example the χ2, the MEWMA, the generalized MEWMA if
parametrized appropriately, and the CUSUM detector.

Furthermore, under nominal conditions if r(k) is a random
variable then S(k+1) is a random variable with probability
density function qk+1(S) and support supp

(
qk+1(S)

)
⊆ [0,∞),

where supp
(
q(S)

)
:= {S ∈ R : q(S)> 0}. Since xD(k) is an

internal value of the detector, which is not transmitted over
a network, it has been argued that xD(k) is confidential and
only the operator has access to it (see for example [10]).

C. Attack Model

An attacker has penetrated the sensor network and can
inject an additive signal ua(k) ∈ Rny to the measurements,
such that ỹ(k) = y(k)+ua(k).

Assumption 3: The attacker has full system knowledge,
i.e. knowledge of A, B, C, K, L, and Σr, and has access to
the measurements y(k), i.e. the attacker can use y(k) in its
design of ua(k). Furthermore, the attacker knows the detector
equations θ(·, ·) and d(·, ·) as well as the detector threshold
JD, but has neither access to xD(k), nor S(k).
We make this assumption because we do not know about
the attacker’s system knowledge and capabilities. Therefore,
we consider this a worst-case scenario. It is also reasonable
to assume that the attacker has no access to xD(k) and S(k),
since these are internal variables not transmitted over the
network. Further, under this assumption it has been shown
(see for example [10]) that an attacker can design ua(k),
such that r(k) = a(k), where a(k) ∈ Rny is a vector chosen
by the attacker. For the attack to remain undetected, i.e.
S(k+1)≤ JD during the attack, a(k) cannot be arbitrary but
has to be designed appropriately. The lack of knowledge
of xD(k) might decrease the attacker’s attack space while
remaining undetected. Therefore, previous research has either
assumed that the attacker knows xD(k), when the attack
happens [10] or assumed that the attack is designed such
that it is remains undetected independently of xD(k) using
a conservative bound [11]. For that reason, we want to
investigate if an attacker can reduce its uncertainty about
xD(k) without triggering an alarm or raising the operator’s
suspicion when r(k) = a(k). Since the attacker has no access
to S(k+1), this represents an open-loop problem. In addition
to that, another goal of the attacker is to maximize the
average value of the estimation error e(k) = x(k)− x̂(k) in
the Kalman filter. More specifically, the attacker concentrates
on maximizing the maximum mean of the estimation error
in the Kalman filter that belongs to safety critical states in
the system (see Section III-B).

From the perspective of the defender it is important to
know if the attacker is able to get to know xD(k), and if yes,
what can one do to prevent that or at least prolong the process

of obtaining the exact xD(k) and simultaneously mitigate the
maximization of the average estimation error.

I I I . AT TA C K C H A R A C T E R I Z AT I O N

In this paper, we look at the case where xD(k) evolves with
linear dynamics, i.e.

xD(k+1) = ADxD(k)+BDr(k),

S(k+1) = f
(
ADxD(k)+BDr(k)

)
= d
(
xD(k),r(k)

)
.

(7)

Here, AD ∈RnD×nD is Schur, BD ∈RnD×ny has full rank, and
nD ≤ ny. Further, f (·) is a vector norm on Rp, AD needs to be
Schur, and g(AD)< 1, where g(·) the matrix norm on RnD×nD

induced by f (·), such that the first three detector conditions
in Assumption 2 are fulfilled. Without loss of generality we
assume the attack starts at k = 0, such that r(k) = a(k) ∀k≥ 0
and xD(0) is unknown to the attacker. Since the dynamics are
linear we can without loss of generality rewrite the detector
state as xD(k) = xD,r(k)+ xD,a(k), where

xD,a(k+1) = ADxD,a(k)+BDa(k)

xD,r(k+1) = ADxD,r(k),

with xD,r(0) = xD(0) and xD,a(0) = 0. Here, xD,a(k) is gov-
erned by the attack signal, while xD,r(k) is an autonomous
system, which is governed by the initial state of the detector.
Since AD is Schur, xD,r(k)→ 0 as k→ ∞. This means that
xD,a(k) can be seen as the estimate of xD(k) at time step k
and xD,a(k)→ xD(k) as k→ ∞.

To have a good estimate, i.e. reduce the uncertainty, at
time step N, we want

||xD(N)− xD,a(N)||2 = ||xD,r(N)||2 ≤ γ

⇔
∣∣∣∣AN

DxD(0)
∣∣∣∣

2 ≤ γ

where γ > 0 is close to zero and ||o||2 represents the Euclidean
norm of o. Since xD(0) is unknown, we obtain an upper bound
Sup = maxx ||x||2 subject to x ∈ {y ∈ Rny : f (y)≤ JD}. With
that we choose N, such that∣∣∣∣AN

D
∣∣∣∣

2 = σmax
(
AN

D
)
≤ γ

Sup
, (8)

where σmax(C) is the maximum singular value of matrix C.
Remark 1: We see that the slower σmax(Ak

D) approaches
zero as k→∞ the more time it takes for the attacker to obtain
a close estimate of the xD(k). Hence, a defender can consider
this fact, when designing the detector.

The attacker not only wants to reduce its uncertainty about
xD(k), but also wants to remain undetected by the detector.
Therefore, we look now at the condition for the attacker
to remain undetected. Since f (·) is a vector norm, we can
determine the following condition to avoid detection.

S(k) = f
(
xD,r(k)+ xD,a(k)

)
≤ f
(
xD,r(k)

)
+ f
(
xD,a(k)

)
≤ g
(
Ak

D
)

f
(
xD,r(0)

)
+ f
(
xD,a(k)

)
≤ g
(
Ak

D
)
JD + f

(
xD,a(k)

)
≤ JD,

⇒ Sa(k) = f
(
xD,a(k)

)
≤ J(k),

where J(k) = JD−g
(
Ak

D
)
JD > 0 for all k > 0. We see that if

Sa(k)≤ J(k), then the attack remains undetected. Note that
J(k)→ JD as k→∞. We can interpret xD,a(k) and Sa(k) as a



virtual detector with threshold J(k) that the attacker initializes
at xD,a(0) = 0 and uses to design its undetectable attack.

Let us summarize these results in a proposition and then
discuss how to design {a(k)}N−1

k=0 .
Proposition 1: An attacker can reconstruct the detector

state with accuracy γ , in N time steps, where N is such
that σmax

(
AN

D
)
≤ γ

Sup
with Sup = maxx∈{y∈Rny : f (y)≤JD} ||x||2 is

fulfilled. The attacker can simultaneously inject attacks a(k)
satisfying Sa(k + 1) = d

(
xD,a(k),a(k)

)
≤ J(k + 1) without

triggering alarms.
A simple way for the attacker to choose the residual is

a(k) = 0 for k ∈ {0, · · · ,N− 1}, since then xD,a(k) = 0 for
all k ≥ 0, which implies that Sa(k) = 0≤ J(k) for all k ≥ 0.
However, this leads to suspicious behaviour in S(k+1), for
example an exponential decay of S(k+1), which might raise
an operator’s suspicion when seeing this on the display
in the control center. Another way is to not change the
measurements and just observe r(k) and feed it into xD,a(k).
The advantage is that S(k + 1) behaves exactly as in the
nominal case, but without knowledge of xD(k) any r(k) might
lead to an alarm, which is considered as a false-alarm under
nominal conditions. A third option is to make the alarm look
like a false alarm, by inducing a spike in one element of r(k),
such that xD(k) is reset to zero. However, since the attacker
is present in the system, this "false alarm" in the last two
strategies might lead to the detection of the attacker.

Therefore, an attacker needs to design a(k) in such a way
that under attack S(k+1) approximately has probability den-
sity qk+1(S), but no alarms are caused. Since xD,a(k)→ xD(k)
as k→∞, we also get Sa(k)→ S(k) as k→∞. Therefore, we
look at the virtual detector Sa(k) instead of S(k), since the
attacker has no direct access to S(k). This means when S(k)
has a probability density function qk(S), which changes for
a given xD(k− 1) then we assume that Sa(k) has the same
probability density function qk(S) but given xD,a(k−1). This
can be formulated as two problems that need to be solved at
each time step k.

Problem 1: Find a probability density function pk+1(S),
such that supp

(
pk+1(S)

)
= [0,J(k + 1)] (no alarms) and

pk+1(S) resembles qk+1(S) as closely as possible.
Problem 2: Draw a sample sk+1 from the probability

distribution with probability density function pk+1(S) and
design a(k) such that Sa(k + 1) = sk+1 and the maximum
average estimation error of the critical states is maximized.
In the following, we propose solutions to these two problems.

A. How to characterize pk(S) (Problem 1)

Kullback et al. [14] defined the average information gain
of each observation to distinguish between a hypothesis
with density function p(S) and a hypothesis with density
function q(S) as DKL(p||q) =

∫
p(S) ln

(
p(S)
q(S)

)
dS, which is

known as the Kullback-Leibler (KL) divergence. Furthermore,
DKL(p||q) is convex in the pair of its arguments. Therefore,
it comes quite natural that we try to minimize the average

information gain DKL(pk||qk) to find pk(S),

min
pk(S)

∫ J(k)

0
pk(S) ln

(
pk(S)
qk(S)

)
dS

s.t.


pk(S)≥ 0 ∀S ∈ [0,J(k)]
pk(S) = 0 ∀S 6∈ [0,J(k)]∫ J(k)
0 pk(S)dS = 1

more convex constraints on pk(S)

.

(9)

The first three constraints are necessary such that pk(S) is
a probability density function. One can also impose more
convex constraints on pk(S) which preserve the convexity
of the problem. For example, we can impose a constraint
on the mean

∫ J(k)
0 Spk(S)dS or the second raw moment∫ J(k)

0 S2 pk(S)dS as well.
In this paper we only look at the case where no additional

constraints are imposed. Then, we need to solve

min
pk(S)

∫ J(k)

0
pk(S) ln

(
pk(S)
qk(S)

)
dS

s.t.


pk(S)≥ 0 ∀S ∈ [0,J(k)]
pk(S) = 0 ∀S 6∈ [0,J(k)]∫ J(k)
0 pk(S)dS = 1

.

(10)

Proposition 2: The optimizer to (10) is

p∗k(S) =


qk(S)∫ J(k)

0 qk(S)dS
S ∈ [0,J(k)]

0 otherwise
, (11)

i.e. the truncated version of qk(S) is the optimal solution.
Proof: Let λ ∈ R be a Lagrange multiplier and the

Lagrangian be

L(p,λ ) =
∫ J(k)

0
pk(S) ln

(
pk(S)
qk(S)

)
dS+λ

(∫ J(k)

0
pk(S)dS−1

)
=
∫ J(k)

0
pk(S) ln

(
pk(S)
qk(S)

)
+λ

(
pk(S)−

1
J(k)

)
dS

=
∫ J(k)

0
l
(

pk(S),λ
)
dS

A necessary condition for optimality (see [15]) is

d
d pk(S)

l
(

pk(S),λ
)∣∣∣∣

pk(S)=p∗k(S)
= 0.

Solving for p∗k(S) leads to

p∗k(S) =

{
e−1−λ qk(S) ∀S ∈ [0,J(k)]
0 ∀S 6∈ [0,J(k)]

,

where we already incorporated the first two constraints of
(10). Now we use the last constraint to find

λ =−1+ ln
(∫ J(k)

0
qk(S)dS

)
,

which results in p∗k(S).



B. How to characterize a(k) (Problem 2)

Once we determined pk+1(S), we take a sample
from this distribution. Let the obtained sample
be sk+1. Now we want to design a(k) such that
Sa(k+1) = f

(
ADxD,a(k)+BDa(k)

)
= sk+1. As mentioned

before the attacker also wants to maximize the average
estimation error e(k) = x(k)− x̂(k) of the operator. The
dynamics of the estimation error are given by

e(k+1) = Ae(k)−Lr̄(k)+w(k), (12)

where r̄(k) = Σ
1
2
r r(k) = Σ

1
2
r a(k) under the attack. Without

loss of generality, we can write e(k) = en(k)+ ea(k), where
en(k) represents the part of the error that is influenced by the
process noise w(k) and ea(k) is the part of the estimation
error that is driven by the attack signal. Further, en(0) = e(0)
and ea(0) = 0. We can interpret ea(k) as the average value
of the estimation error at time step k. Let us introduce the
estimation error of critical states as ecrit(k) = Tce(k), where
Tc ∈ Rnc×nx is a matrix that extracts the critical estimation
errors of e(k) and nc ≤ nx. This could for example be the
estimation error of the pressure in a closed container, which
might explode if the pressure is too large. Therefore, the
attacker wants to maximize the maximum estimation error of
these critical states. The optimization problem to find a(k)
becomes then

Ie =max
a(k)
||Tcea(k+1)||∞ = max

a(k)

∣∣∣∣TcAea(k)−TcLΣ
1
2
r a(k)

∣∣∣∣
∞

s.t. Sa(k+1) = f
(
ADxD,a(k)+BDa(k)

)
= sk+1,

(13)
where both ea(k), xD,a(k), and sk+1 are known to the attacker.

Before we introduce the solution to (13), we define the
dual norm of a vector norm [16].

Definition 1: The dual norm of a vector norm f (x) in Rn

is defined as

f D (z) := max
x

∣∣zT x
∣∣ s.t. f (x) = 1,

where z ∈ Rn.
Now we introduce an intermediate result for solving (13).

Lemma 1: The optimal value I of
max

ā
|c̄T ā+ d̄| s.t. f (ā) = s, (14)

where s≥ 0, d̄ ∈ R, ā, c̄ ∈ RnD , is given by

I = max
(
| f D (c̄)s+ d̄|, |− f D (c̄)s+ d̄|

)
(15)

with the maximizer

ā∗ = argmax
ā

(−1) jcT ā s.t. f (ā)≤ s. (16)

Here, j = 2 if
∣∣ f D (c̄)s + d̄

∣∣ ≥ ∣∣− f D (c̄)s + d̄
∣∣ and j = 1

otherwise.
Proof: We first split (14) into two optimization prob-

lems, one that maximizes and one that minimizes c̄T ā+ d̄
under the given constraint respectively. The larger absolute
value of the optimal values of these two problems gives
us the solution to (14). Note that d̄ is a scalar and there-
fore the optimizer of these two problems, will maximize
or minimize c̄T ā, respectively. Definition 1 gives us that
max f (ā)=s

∣∣c̄T ā
∣∣= f D (c̄)s, from which (15) readily follows.

Since the optimizer lies on the boundary of the constraint set,

we replace the equality constraint of (14) with an inequality
constraint to obtain the convex optimization (16).

Theorem 1: The solution Ie of (13) is given by

Ie = max
i∈{1,··· ,nc}

max
(∣∣ f D (c̄i)sk+1 + d̄i

∣∣, ∣∣− f D (c̄i)sk+1 + d̄i
∣∣),

and the corresponding attack vector can be found as

a(k) = B†
D

(
ā∗−ADxD,a(k)

)
(17)

with ā∗ being the optimizer of the convex problem

ā∗ = argmax
ā

(−1) ji∗ c̄T
i∗ ā s.t. f (ā)≤ sk+1

where ā ∈ RnD , i∗ ∈ {1, · · · ,nc} denotes an element of
Tcea(k + 1) for which Ie is achieved, and ji∗ = 2 if∣∣ f D (c̄i∗)sk+1 + d̄i∗

∣∣≥ ∣∣− f D (c̄i∗)sk+1 + d̄i∗
∣∣ and ji∗ = 1 oth-

erwise.
Here, c̄T

i =−tT
i LΣ

1
2
r B†

D, d̄i = tT
i
(
Aea(k)+LΣ

1
2
r B†

DADxD,a(k)
)
,

and tT
i is the ith row of Tc. Further, B†

D denotes the Moore-
Penrose pseudoinverse of BD such that BDB†

D = InD because
BD is full rank and nD ≤ ny. Here, Io represents the o
dimensional identity matrix.

Proof: We exploit that
||Tcea(k+1)||∞ = maxi∈{1,··· ,nc}

∣∣tT
i ea(k+1)

∣∣, where
tT
i ea(k + 1) represents the estimation error of the ith

critical state. This approach has also been used in [4].
Therefore, we can solve nc problems of the form

max
a(k)

∣∣∣tT
i Aea(k)− tT

i LΣ
1
2
r a(k)

∣∣∣
s.t. f

(
ADxD,a(k)+BDa(k)

)
= sk+1,

(18)

where i ∈ {1, · · · ,nc} and pick a(k) which results in the
maximal objective value of all of these problems. Introducing
ā = ADxD,a(k)+BDa(k), we reformulate (18) as

max
ā

∣∣c̄T
i ā+ d̄i

∣∣ s.t. f (ā) = sk+1, (19)

which represents nc problems of the form presented in
Lemma 1. Therefore, we can use Lemma 1 to determine
both Ie, ā and with that a(k).

Remark 2: If f (x) =
(

∑i |xi|p
) 1

p , where 1≤ p≤∞, and xi

is the ith element of x, then f D (x) =
(

∑i |xi|q
) 1

q such that
1
p +

1
q = 1. This is a result of the Hölder inequality (see [16]).

Remark 3: One can also think of solutions, which take
other objectives into account when designing a(k) at each
time step. However, we chose this objective, because it
maximizes the estimation error of the critical state in the
sense of the maximum norm and we are able to find an
analytical solution.

I V. A P P L I C AT I O N T O T H E M E W M A D E T E C T O R

Now we apply the previously presented procedure to the
MEWMA detector and give a numerical example. Here, we
assume that no extra constraints on pk(S) are imposed.



A. The MEWMA detector

The MEWMA detector in [8] is given by
xD(k+1) = β r(k)+(1−β )xD(k)

S̃(k+1) =
2−β

β
||xD(k+1)||22,

(20)

where β ∈ (0,1]. If S̃(k+1)≤ J̃D no alarm is triggered, where
J̃D ∈ R≥0 and if an alarm happens the detector state is reset
to zero. The MEWMA detector as defined in [8], does not
fit the detector model in (7), but we can rewrite it as

xD(k+1) = β r(k)+(1−β )xD(k)

S(k+1) = ||xD(k+1)||2
(21)

and use JD =
√

β

2−β
J̃D as the new detector threshold. This

now fits (7) with AD = (1− β ), BD = β , f (·) being the
Euclidean norm, and g(·) = σmax(·).

Recall, xD(0) is unknown to the attacker. Since the dynam-
ics are linear, we split the MEWMA detector into two parts,
xD,a(k) and xD,r(k), so that xD(k) = xD,a(k)+ xD,r(k), where

xD,a(k+1) = βa(k)+(1−β )xD,a(k)

xD,r(k+1) = (1−β )xD,r(k),

k ≥ 0, xD,r(0) = xD(0), and xD,a(0) = 0.
Now we determine the attack duration N according to (8).
Proposition 3: The uncertainty of the MEWMA detec-

tor’s state at time step N is smaller than γ > 0, i.e.
||xD(N)− xD,a(N)||2 ≤ γ if

N ≥
⌈ ln( γ

JD
)

ln(1−β )

⌉
, (22)

where dxe rounds x up to the next larger integer value.
Note that γ ≤ JD for N ≥ 0.

Proof: Since AD = 1 − β , we see that
σmax(AN

D) = (1−β )N . Further, we determine that Sup = JD.
With that we solve (8) for N and obtain inequality (22).
The attacker can launch an attack for N time steps such
that the initial detector state xD(0) decreased sufficiently
so that the attacker’s uncertainty about xD(k) at time step
N is small, i.e. xD(N) ≈ xD,a(N). Further, for the attack
to remain undetected we obtain J(k) = JD(1− (1−β )k),
because g(Ak

D) = (1−β )k.
Now that we have determined N and J(k) let us determine

the probability density function pk(S) by finding qk(S)
under nominal conditions. Here, we change the procedure
of Section III slightly and look at

1
β 2 S(k+1)2 = ||r(k)+ 1−β

β
xD(k)||22

instead of S(k+1) because in the nominal case this follows
a noncentral χ2 distribution with ny degrees of freedom and
noncentrality parameter λ (k + 1) =

( 1−β

β

)2xD(k)T xD(k) at
each time step.

Therefore according to Proposition 2 we design
pk+1(S) as a truncated noncentral χ2 distribution
with ny degrees of freedom, noncentrality parameter
λa(k+1) =

( 1−β

β

)2xD,a(k)T xD,a(k) and support
supp(pk+1(S)) =

[
0, 1

β 2 J(k+1)2
]
.

After we draw a sample sk+1 from the truncated noncentral
χ2 distribution pk+1(S), we use (13) to determine a(k), which
for the MEWMA case looks as follows

Ie =max
a(k)
||Tcea(k+1)||∞

s.t. ||βa(k)+(1−β )xD,a(k)||2 = β
√

sk+1.
(23)

Corollary 1: The impact for the MEWMA is
I M

e =

max
i∈{1,··· ,nc}

max
(∣∣||c̄i||2β

√
sk+1 + d̄i

∣∣, ∣∣−||c̄i||2β
√

sk+1 + d̄i
∣∣)

for the attack vector

a(k) = (−1) ji∗
c̄i∗

||ci∗ ||2
√

sk+1−
1−β

β
xD,a(k),

where i∗ is an index that results in I M
e , c̄T

i =− 1
β

tT
i LΣ

1
2
r ,

d̄i = tT
i
(
Aea(k)+

1−β

β
LΣ

1
2
r xD,a(k)

)
, and ji∗ = 2 if∣∣||c̄i||2β

√
sk+1 + d̄i

∣∣ ≥ ∣∣− ||c̄i||2β
√

sk+1 + d̄i
∣∣ and ji∗ = 1

otherwise.
This follows readily from Theorem 1.

B. Numerical Example
Let us now look at a numerical example to verify the

procedure for the MEWMA detector.
For the simulation we use the linearized twelve dimen-

sional reduced order model of a 76 story building given in
[17]. We use the model with ny = 20 measurements and
further discretize it with a sampling period of Ts = 0.01s to
design the LQG controller. For the MEWMA detector, we
use β = 0.2 and J̃D = 40, which leads to an average time
between false alarms of approximately 284 time steps. To
reduce the uncertainty about xD(k), we choose γ = 10−6 such
that we get an attack length of N = 66 time steps according
to (22). We let the system run for 100 time steps initially and
then start the attack at k = 100, to obtain a comparison of
S̃(k) before and after the attack. Further, for this simulation
we use Tc = Inx .

The upper plot in Figure 2 shows one simulation run of the
trajectory of S̃(k) for the MEWMA detector as described in
(20) before and after the attack and the trajectory of S̃a(k) that
is the virtual MEWMA detector the attacker uses to design
its undetectable attack. We see that after the attack starts
the trajectory S̃(k) still is random and does not show any
obvious irregularities to the bare human eye. Furthermore,
the attack is not detected since the alarm threshold J̃D = 40
is never crossed and we observe that S̃a(k)→ S̃(k) as time
progresses. This shows us that the attacker’s estimate of
xD(k) becomes more accurate over time. Finally, we look at
the accuracy of the estimate at the end of the attack. We
have ||xD(166)− xD,a(166)||2 = 6.2572 ·10−7. As desired,
the uncertainty is smaller than γ = 10−6.

The lower plot of Figure 2 shows the average trajectory
of ||Tcea(k)||∞ over 10000 simulations. Here, we see that the
maximum estimation error is on average increasing over time.

Therefore, we verified that an attacker with access to
and control over the measurements is able to break the
confidentiality of the internal state of the MEWMA detector
and to simultaneously increase the maximum estimation error
of the critical states.



0 20 40 60 80 100 120 140 160

Time step k

0

10

20

30

40
MEWMA Detector Output

100 110 120 130 140 150 160

Time step k

0

0.1

0.2

0.3

||T
ce

a
(k

)|
|

Average trajectory of ||T
c
e

a
(k)||  over 10000 simulations

Fig. 2. The upper plot shows how S̃(k) behaves before and after the
attack starting at k = 100. The lower plot shows the average trajectory of
||Tcea(k)||∞ over 1000 simulations

V. C O N C L U S I O N S

In this paper, we investigated ways how an attacker that has
access to all measurements and can change them arbitrarily is
able to reduce its uncertainty about the detector’s internal state
that evolves with linear dynamics. The proposed procedure
takes the statistics of the detector output signal into account
such that an operator will not notice irregularities if it looks
at the detector output even if no alarm is triggered. Further,
the attacker is able to maximize the maximum norm of the
average estimation error of the critical states in the Kalman
filter at each time step.

There are several directions of future work we have with
this work. In our work, we showed how an attacker can break
the confidentiality of the detector’s internal state. Therefore
it is important to look into defence mechanisms such that the
estimation of the detector’s state becomes more difficult or
even impossible for the attacker. Further, here we only looked
at detector which have linear dynamics. Therefore, extending
this procedure to more general anomaly detector models is of
interest as well. This might result in novel anomaly detectors
for which the confidentiality cannot be broken.
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