

Cybersecurity in Industrial Control Systems

André M.H. Teixeira

Dept. Electrical Engineering Uppsala University

Riskförmiddag i Uppsala 3 December 2020

Typical Vulnerabilities in Industrial Control Systems

- Computers in control center do not have adequate protection
 - No anti-virus or intrusion detection, USB-ports accessible
- Communication links lack basic security features
 - No encryption or authentication
- Lack of physical protection
 - PLCs and RTUs accessible
- Zero-day vulnerabilities

Example: Stuxnet (2010)

- Targets: Windows, ICS, and PLCs connected to variablefrequency drives
- Exploited 4 zero-day vulnerabilities
- Speculated goal:

Harm centrifuges at uranium enrichment facility in Iran

- Attack mode:
- 1. Delivery with USB stick (no internet connection necessary)
- 2. Replay measurements to control center and execute harmful controls

["The Real Story of Stuxnet", IEEE Spectrum, 2013]

Cyber-Secure Control Systems

Modern Industrial Control Systems

- are being integrated with business/corporate networks
- have many potential points of cyber-physical attack

Need tools and strategies to understand and mitigate attacks:

- Which threats should we care about?
- What impact can we expect from attacks?
- Which resources should we protect (more), and how?
- Answer: Risk management

Cyber Risk Management

- Related Standards
 - ISO 27000 Information security
 - ISO 31000 Risk Management
- Conceptually similar to Safety Risk Management
- Similar tools can (often) be used
 - Attack Graphs (vs Fault trees)
 - Bayesian networks
- Different main focus:
 - Information system assets
 - Malicious adversaries

The Concept of Risk

- [Kaplan & Garrick, 1981] Risk is a set of tuples:
 Risk = (Scenario, Likelihood, Impact)
 - Attack Scenario
 - What is the system?
 - What is the type of adversary?
 - Impact of the attack
 - What security properties were violated?
 What services were interrupted?
 - What are the consequences? (Financial, operational, reputation, human lives, ...)
 - Likelihood of the attack
 - "Probability" of successful attack
 - Required capabilities, knowledge...

Likelihood Metrics for Industrial Control Systems

- Likelihood depends on <u>ICT infrastructure</u>
- Successful attack:
- Successful initial infection
- Sucessful dissemination of malware
- Sucessful infection of target devices
- Sucessful control of target devices
- Likelihood metric: probability of successful attack
 - Hard to compute lack of historical data
 - Alternative: use proxy metrics that assess the attack effort, e.g.:
 - <u>number</u> of infected target devices
 - Required capabilities and knowledge
 - Number of vulnerabilities exploited

• .

Is More Than IT Security and Safety Needed?

• Clearly IT security and Safety are needed: Authentication, encryption, firewalls, redundancy, fault tolerance, etc.

But not sufficient...

- Interaction between physical and cyber systems make control systems different from normal IT systems
- Malicious actions can enter anywhere in the closed loop and cause harm, whether channels secured or not
- Malicious attackers have an intent, as opposed to faults, and can act strategically
- Can we trust the interfaces and channels are really secured? (see OpenSSL Heartbleed bug...)
- Security and Safety recommendations can contradict each other

Final Thoughts

Security =/= Safety Säkerhet =/= Säkerhet

Integration of safety and security: necessary, but challenging!

Thank you!

andre.teixeira@angstrom.uu.se

Further Reading

- Introduction to CPS/NCS security
- Cardenas, S. Amin, and S. Sastry: "Research challenges for the security of control systems". Proceedings of the 3rd Conference on Hot topics in security, 2008, p. 6.
- Special Issue on CPS Security, IEEE Control Systems Magazine, February 2015
- D. Urbina *et al.*: "Survey and New Directions for Physics-Based Attack Detection in Control Systems", NIST Report 16-010, November, 2016
- CPS attack models, impact, and risk management
- A. Teixeira, I. Shames, H. Sandberg, K. H. Johansson: "A Secure Control Framework for Resource-Limited Adversaries". Automatica, 51, pp. 135-148, January 2015.
- A. Teixeira, K. C. Sou, H. Sandberg, K. H. Johansson: "Secure Control Systems: A Quantitative Risk Management Approach". IEEE Control Systems Magazine, 35:1, pp. 24-45, February 2015
- D. Urbina *et al.*: "Limiting The Impact of Stealthy Attacks on Industrial Control Systems", 23rd ACM Conference on Computer and Communications Security, October, 2016