Distributed Fault Detection and Isolation with Imprecise Network Models

Iman Shames, André H. Teixeira, Henrik Sandberg, Karl H. Johansson

KTH, Stockholm, Sweden

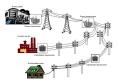
29 June, 2012, American Control Conference

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Networked Systems

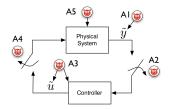
Examples of Networked Systems:

- Power Generation and Distribution Networks.
- Water Networks.
- Sensor Networks.
- Networked Industrial Processes



Motivation: Distributed Systems Strengths and Vulnerabilities

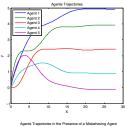
- Solved many problems:
 - Modularity.
 - Distributed computation.
 - Easier monitoring.
 - No single point of failure.
 - ▶ ...

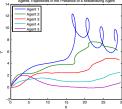


- Raised concerns:
 - Spatial distribution.
 - More components to fail.

I. Shames [KTH / ACCESS]

More entry points for malicious agents.





Problem Description

Solution Idea

D-FDI with Imprecise Network Models

Simulation

Concluding Remarks and Future Steps

Model-based Fault Detection and Isolation

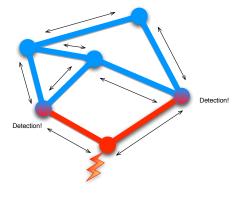
Problem Description

Problem

How to detect and isolate the fault distributedly where the exact model of the network is not known?

Solution

- ► Each node i detect a fault in j ∈ N_i via (1) local measurements, and (2) knowing the network. The result is known.
- Applications to two sets of problems are highlighted.



(日)

Problem Description

Solution Idea

D-FDI with Imprecise Network Models

Simulation

Concluding Remarks and Future Steps

Model-based Fault Detection and Isolation

Problem Description

There are N nodes and each Node i:

$$\dot{\mathbf{x}}_i(t) = \mathbf{R}_i(\mathbf{x}_i(t), \mathbf{x}_{i_1}(t), \dots, \mathbf{x}_{i_{|\mathcal{N}_i|}}(t))$$
$$= \mathbf{R}_i(\mathbf{y}_i(t))$$

$$\begin{array}{l} \bullet \hspace{0.1 cm} i_{j} \in \mathcal{N}_{i} \\ \bullet \hspace{0.1 cm} \mathbf{y}_{i}(t) = \\ \hspace{0.1 cm} [\mathbf{x}_{i}(t), \mathbf{x}_{i_{1}}(t), \ldots, \mathbf{x}_{i_{|\mathcal{N}_{i}|}}(t)] \\ \end{array} \\ \hspace{0.1 cm} \text{measurements available to } i \end{array}$$

► A faulty node *j*:

$$\dot{\mathbf{x}}_{j}(t) = \mathbf{R}_{j}(\mathbf{x}_{j}(t), \mathbf{x}_{i_{1}}(t), \dots, \mathbf{x}_{i_{|\mathcal{N}_{j}|}}(t)) + \mathbf{f}_{j}(t)$$
$$= \mathbf{R}_{j}(\mathbf{y}_{j}(t)) + \mathbf{f}_{j}(t)$$

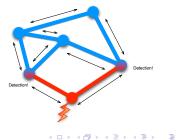
• Unknown fault signal: $\mathbf{f}_i(t)$

Network:

 $\dot{\mathbf{x}}(t) = \mathbf{R}(\mathbf{x}(t)) + \mathbf{b}\mathbf{f}_i(t)$

$$\mathbf{x}(t) = [\mathbf{x}_1^{\mathsf{T}}(t), \dots, \mathbf{x}_N^{\mathsf{T}}(t)]^{\mathsf{T}}.$$

- R(·) = [R₁['] (·), ..., R_N['] (·)]['].
 b: a vector of all zero except for the entries corresponding to j.



Problem Description

Solution Idea

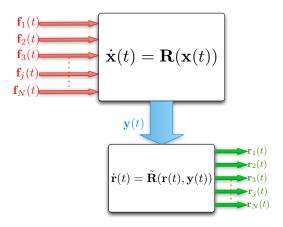
D-FDI with Imprecise Network Models

Simulation

Concluding Remarks and Future Steps

Solution Idea

Centralized Solution



- Find a residual generator, $\tilde{\mathbf{R}}(\cdot)$ s.t. $\|\mathbf{r}_j(t)\| \le \epsilon$ iff $\mathbf{f}_k(t) = 0$ for all $k \ne j$.
- The value $\mathbf{r}_{j}(t)$ is called a residual.

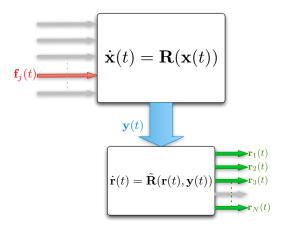
9/23

э

・ ロ ト ・ 雪 ト ・ 目 ト

Solution Idea

Centralized Solution



- Find a residual generator, $\tilde{\mathbf{R}}(\cdot)$ s.t. $\|\mathbf{r}_j(t)\| \le \epsilon$ iff $\mathbf{f}_k(t) = 0$ for all $k \ne j$.
- The value $\mathbf{r}_{j}(t)$ is called a residual.

9/23

э

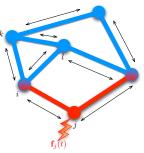
Solution Idea

Distributed Solution

Distributed FDI

It is desired:

- 1. Node *i* only measures $\mathbf{y}_i(t) = [\mathbf{x}_i(t), \mathbf{x}_j(t), \mathbf{x}_k(t), \mathbf{x}_l(t)].$
- 2. Node *i* generates $\mathbf{r}_{j}^{i}(t)$, $\mathbf{r}_{k}^{i}(t)$, and $\mathbf{r}_{l}^{i}(t)$ s.t. $\mathbf{r}_{j}^{i}(t) \leq \epsilon$, $\mathbf{r}_{k}^{i}(t)$, $\mathbf{r}_{l}^{i}(t) > \epsilon$ iff *j* is faulty.



(日)

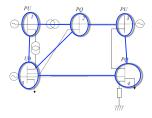
It is possible to generate such residuals for two important applications.

Application: Power Networks

- Active power flow on a loss-less distribution grid.
- Each bus has dynamics given by the "swing equation":

$$M_i \ddot{\delta}_i + D_i \dot{\delta}_i = -\sum_{j \in N_i} w_{ij} \sin(\delta_i - \delta_j) + P_{mi}$$

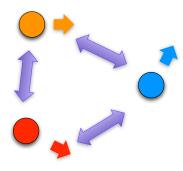
- $\delta_{ij} = \delta_i \delta_j$ is small, thus $\sin(\delta_i - \delta_j) \approx \delta_i - \delta_j.$
 - consider δ_i and $\dot{\delta}_i(t)$ to be states of each bus.
 - Stacking all the states: $\dot{\mathbf{x}}(t) = A\mathbf{x}(t) + B\mathbf{P}_m$.



11/23

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Application: Robotic Networks



$$u = \sum_{j \in N_i} w_{ij} \left[(\xi_j - \xi_i) + \gamma \left(\zeta_j - \zeta_i \right) \right]$$

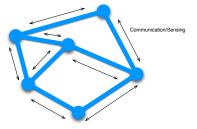
 $\dot{\xi}(t) = \zeta \quad \xi$: Position

 $\dot{\zeta}(t) = u \quad \zeta : \text{Velocity}$

Network Models

Consider N agents

$$\dot{\xi}_i(t) = \zeta_i(t)$$
$$\dot{\zeta}_i(t) = u_i(t),$$



Application 1:

$$u_i(t) = -\frac{d_i}{m_i}\zeta_i(t) + \sum_{j \in N_i} \frac{w_{ij}}{m_i} \left(\xi_j(t) - \xi_i(t)\right)$$

Application 2:

$$u_i(t) = \sum_{j \in N_i} w_{ij} \left[\left(\xi_j(t) - \xi_i(t) \right) + \gamma \left(\zeta_j(t) - \zeta_i(t) \right) \right]$$

Network Models
Set
$$\mathbf{X}(t) = [\xi_1(t), \cdots, \xi_N(t), \zeta_1(t), \cdots, \zeta_N(t)]^\top$$

$$\dot{\mathbf{X}}(t) = A\mathbf{X}(t)$$

Application 1:

$$\begin{split} A &= \left[\begin{array}{cc} 0_N & I_N \\ -\bar{M}\mathcal{L} & -\bar{D}\bar{M} \end{array} \right] \\ \bar{M} &= \text{diag} \left(\frac{1}{m_1}, \cdots, \frac{1}{m_N} \right) \\ \bar{D} &= \text{diag} \left(d_1, \cdots, d_N \right) \end{split}$$

Application 2:

$$A = \left[\begin{array}{cc} 0_N & I_N \\ -\mathcal{L} & -\gamma \mathcal{L} \end{array} \right],$$

$$y_i(t) = C_i \mathbf{X}(t)$$

 \mathcal{L} : Laplacian. Fault at agent *j*:

$$\begin{bmatrix} \dot{\xi}_j(t) \\ \dot{\zeta}_j(t) \end{bmatrix} = \begin{bmatrix} \xi_j(t) \\ \zeta_j(t) \end{bmatrix} + f_j(t)$$
$$\dot{\mathbf{x}}(t) = A\mathbf{x}(t) + \mathbf{b}f_j(t)$$

Unknown Input Observer

To generate $\mathbf{r}(t)$ at each of the nodes we use UIOs.

Definition (UIO)

A state observer is an unknown input observer (UIO) if the state estimation error approaches zero asymptotically, regardless of the presence of an unknown input.

Theorem

The necessary and sufficient conditions for a UIO to exist for the above system in are:

$$\operatorname{rank}(C_i\mathbf{b}) = \operatorname{rank}(\mathbf{b}) = 1, \quad \operatorname{rank}\left(\begin{bmatrix} sI_{2N} - A & \mathbf{b} \\ C_i & 0_{\tilde{N}_i \times 1} \end{bmatrix} \right) = 2N + 1$$

for all $Re(s) \geq 0$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Model-based Fault Detection and Isolation: Sensing Requirements

- Suppose double integrator dynamics.
- For a given b (fault distribution vector), it is required to sense (have an "appropriate" C_i) such that

$$\operatorname{rank}(C_i\mathbf{b}) = \operatorname{rank}(\mathbf{b}) = 1$$

$$\mathrm{rank} \left(\left[\begin{array}{cc} sI_{2N} - A & \mathbf{b} \\ C_i & \mathbf{0}_{\tilde{N}_i \times 1} \end{array} \right] \right) = 2N + 1$$

for all $Re(s) \ge 0$.

Theorem

There exists a C_i corresponding to local measurements at each note *i* such that the above conditions are satisfied for both protocols.

Remark

Using $|N_i|$ UIO at *i* appropriate residuals can be generated such that faults in N_i can be isolated and detected.

1. Global Model Knowledge, 2. Computationally Expensive.

Problem Description

Solution Idea

D-FDI with Imprecise Network Models

Simulation

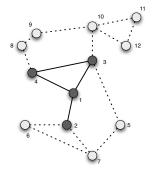
Concluding Remarks and Future Steps

Model-based Fault Detection and Isolation: Imprecise Network Models

- Exact network model with no fault: $\dot{r}_{j}^{i}(t) = Fr_{j}^{i}(t)$ eas.
- Inexact model, except for one-hop neighbours of i:

$$\dot{r}_j^i(t) = Fr_j^i(t) + \Delta(t)$$

- For the fault free case: $\Delta(t)$ eas.
 - But not for the faulty case.
 - No $r_i^j(t)$ in the network goes to zero.
 - Isolation becomes impossible ... not quite.



A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A

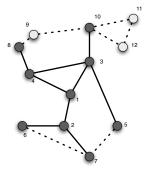
Model-based Fault Detection and Isolation: Imprecise Network Models

Assumption

- Only the proximity graph of i is known.
- i can measure the states of its two-hop neighbours.

Theorem

Consider the distributed control system with a fault in node $k \in N_i$ and measurements satisfying above assumption. There exists a UIO for node *i* that enables to detect and isolate a fault in *k*.



Problem Description

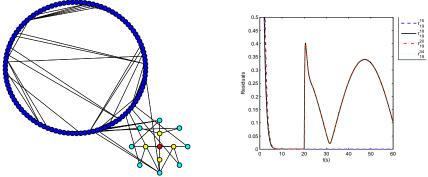
Solution Idea

D-FDI with Imprecise Network Models

Simulation

Concluding Remarks and Future Steps

Imprecise Model: Simulation



89% reduction in the dimension of the observers. FDI is achieved.

21/23

æ

イロト イロト イヨト イヨト

Problem Description

Solution Idea

D-FDI with Imprecise Network Models

Simulation

Concluding Remarks and Future Steps

Concluding Remarks and Future Steps

Concluding Remarks:

- Existence of observers for two major linear control laws for double integrator agents.
- Having position or velocity measurements from neighbours, we always can construct an observer at each of the nodes.
- Imprecise interconnection models were handled.
- The dimensions of the observers were decreased.

Near-Future Steps:

- Classification of observable components of a network.
- Replacing network components with their approximate models.

-Thanks The End– Questions?