Cyber-Security Analysis of State Estimators in Electric Power Systems

André Teixeira¹, Saurabh Amin², Henrik Sandberg¹, Karl H. Johansson¹, and Shankar Sastry²

 $\begin{array}{c} \mbox{ACCESS Linnaeus Centre, KTH-Royal Institute of Technology}^1 \\ \mbox{TRUST Center, UC Berkeley}^2 \end{array}$

Conference on Decision and Control December 17th, 2010

1 Introduction

- Motivation
- Problem Formulation
- 2 Background
- 3 Stealthy Deception Attacks
- ④ Simulation Example
- 5 Final Remarks

1 Introduction

- Motivation
- Problem Formulation

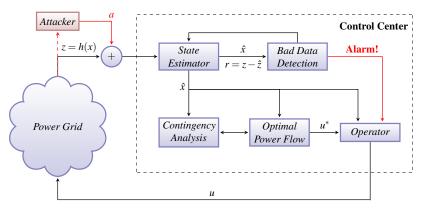
2 Background

- 3 Stealthy Deception Attacks
- 4 Simulation Example
- 5 Final Remarks

3

- Normal failures have huge impact US-Canada 2003 Blackout
- What about intentional failures?

KTH VETENSKAP OCH KONST



- Most of the theory developed from the 70's to the 90's assumes the data corruption comes from "nature" \Rightarrow noise
 - A framework to analyze this system under malicious data corruption is lacking!

Questions

- Can malicious attackers generate stealthy deception attacks, with perfect model knowledge? [Liu et al. 2009]
- Can malicious attackers generate stealthy deception attacks, without perfect model knowledge? [This paper]
- How to reasonably model the attacker? [This paper]
- ► How "hard" is it to perform stealthy deception attacks? [Sandberg et al. 2010, Dán et al. 2010]
- ▶ How to deploy protective resources? [Bobba et al. 2010, Dán et al. 2010]
- Objectives
 - Provide a (comprehensive) framework to analyze control systems under malicious data corruption.

伺 ト イヨト イヨト

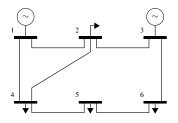
Introduction

- Motivation
- Problem Formulation
- 2 Background
- 3 Stealthy Deception Attacks
- 4 Simulation Example
- 5 Final Remarks

< ∃ →

• Steady-State Model:

 $\begin{aligned} z &= h(x) + \epsilon \\ \text{Ex.: } P_{14} &= V_1 V_4 b_{14} \sin(\theta_1 - \theta_4) \\ \text{measurements: } z &\in \mathbb{R}^m \\ \text{state: } x &\in \mathbb{R}^n \\ \text{nonlinear model: } h(x) \\ \text{Gaussian noise: } \epsilon &\sim \mathcal{N}(0, R) \end{aligned}$



• Nonlinear Weighted Least-Squares:

$$\hat{x} = \arg\min_{x \in \mathbb{R}^n} \frac{1}{2} r(x)^\top R^{-1} r(x),$$

where r(x) = z - h(x) is the measurement residual

• Local Linear Approximation around origin $(z = Hx + \epsilon)$:

$$\hat{x} = \left[H^\top R^{-1} H \right]^{-1} H^\top R^{-1} z$$

 $H = \frac{\partial h}{\partial x}(\hat{x}^0)$ - the Jacobian matrix (tall and sparse)

• Normalization:

$$\begin{split} \bar{z} &= R^{-1/2}z & \hat{x} = \bar{H}^{\dagger}\bar{z} \\ \bar{\epsilon} &= R^{-1/2}\epsilon & \Rightarrow & \hat{z} = \bar{H}\bar{H}^{\dagger}\bar{z} = \bar{K}\bar{z} \\ \bar{H} &= R^{-1/2}H & \bar{\tau} = (I - \bar{K})\bar{z} = \bar{S}(\bar{H}x + \bar{\epsilon}) = \bar{S}\bar{\epsilon} \\ \bar{\epsilon} &\sim \mathcal{N}(0, I) \end{split}$$

• Main useful concepts:

- \bar{K} is the orthogonal projector onto Im (\bar{H}) , since $\bar{K}\bar{K} = \bar{K} = \bar{K}^{\top}$
- $\bar{S} = (I \bar{K})$ is the orthogonal projector onto $\text{Ker}(\bar{H}^{\top})$
- ▶ $\operatorname{Im}(\overline{H}) \perp \operatorname{Ker}(\overline{H}^{\top}) \Rightarrow \overline{S}a = 0 \forall a \in \operatorname{Im}(\overline{H})$ [Clements et al. 81, Liu et al. 09]

• Hypothesis test:

- ► *H*₀: No bad data is present (null hypothesis)
- ▶ *H*₁: Bad data is present (alternative hypothesis)
- Performance index test: $J(\hat{x}) = \bar{\epsilon}^{\top} \bar{S} \bar{\epsilon} \sim \chi^2_{m-n}:$ accept H_0 if $\|\bar{r}\|_2 \le \sqrt{\tau_{\chi}(\alpha)}$ • Largest normalized residual test: $\bar{r}(\hat{x}) \sim \mathcal{N}(0, \bar{S}), D = \text{diag}(\bar{S}):$ accept H_0 if $\|D^{-1/2}\bar{r}\|_{\infty} \le \tau_{\mathcal{N}}(\alpha)$
 - $\alpha \in [0, 1]$ is the false alarm rate, *i.e.* $P(H_1|H_0)$.
 - General expression: $||Wr(\hat{x})||_p < \tau$, for suitable W, p and τ .

- Motivation
- Problem Formulation
- 2 Background
- 3 Stealthy Deception Attacks
 - 4 Simulation Example
 - 5 Final Remarks

< ∃ →

Stealthy Deception Attacks Attacker Model

- Corrupted measurements: $\bar{z}^a = \bar{z} + a$
- Attacker Goals
 - Convergence of the estimator (trivial for the linear case);
 - Stealthiness: $\|Wr(\hat{x}^a)\|_p < \tau$;
 - Induce a desired bias on a subset of measurements
- Minimum "Effort" Attack Synthesis

$$\min_{a} \|a\|_{p}$$
s.t. $a \in \mathcal{G}, \ a \in \mathcal{U}$

- \mathcal{G} set of goals
- U class of stealthy attacks

• Different metrics for "effort"

- p = 0: cardinality of a (# of measurements to be corrupted) - not convex
- ▶ p = 1: may be used as a convex approximation of p = 0
- p = 2: is related to measurement redundancy in the system
- All quantify "how hard" it is to attack the estimator, for a given set of goals [Sandberg et al. 10]

• Stealthy attacks with Perfect Model Knowledge

 $a \in \operatorname{Im}(\bar{H}) \Rightarrow a \in \mathcal{U}$ [Clements et al. 81, Liu et al. 09]

•
$$a \in \operatorname{Im}(\overline{H}) \Leftrightarrow$$

 $\exists c : a = \overline{H}c$

- Guaranteed that $r(\bar{z}^a) = \bar{S}(\bar{z} + a) = \bar{S}\bar{z} = r(\bar{z})$
- $P(H_1|H_1) = P(H_1|H_0)$

Stealthy Deception Attacks Class of Stealthy Attacks

KTH VETENSKAP OCH KONST

• Stealthy attacks with Perturbed Model Knowledge

- Known model is $\tilde{H} = \bar{H} + \Delta \bar{H}$
- Let the same policy be used: $a = \tilde{H}c$, for some c.
- $\bar{r}(\bar{z}^a) = \bar{S}\bar{\epsilon} + \bar{S}a$
- $\bar{S}a \neq 0 \Rightarrow P(H_1|H_1) \neq P(H_1|H_0)$: No perfect stealthiness
- ▶ Relaxation Allow for a maximum detection risk tolerated by the attacker, $\overline{\delta}$: $P(H_1|H_1) \leq P(H_1|H_0) + \overline{\delta}$. Depends on the detection scheme!

 $\star\,$ What is the class of attacks satisfying such condition?

- Solution steps:
 - Given a detection scheme, α , and $\overline{\delta}$, obtain $\lambda : \|\overline{S}a\|_{P} \le \lambda \Rightarrow P(H_{1}|H_{1}) \le P(\underline{H}_{1}|H_{0}) + \overline{\delta}$
 - Given λ , obtain $\beta : \|a\|_p \leq \beta \Rightarrow \|\overline{S}a\|_p \leq \lambda$
 - Then $||a||_p \leq \beta \Rightarrow a \in \mathcal{U}$

Performance index test

- Under attack, $J_a(\hat{x}) \sim \chi^2_{m-n}(\lambda)$ where $\lambda = \|\bar{S}a\|_2^2$ (noncentrality parameter).
- $\bar{r}_a = \bar{S}a$ corresponds to the residual bias due to the attack (recall $\bar{r}(\bar{z}^a) = \bar{S}\bar{\epsilon} + \bar{S}a$)
- An attack is $\overline{\delta}$ -stealthy if $P(H_1|H_1) = P(J_a > \tau_{\chi}(\alpha)) \le P(H_1|H_0) + \overline{\delta}$:

$$\int_{\tau_{\chi}(\alpha)}^{\infty} g_{\lambda}(u) du \leq \alpha + \overline{\delta}.$$
 (1)

Assumption

 $P(H_1|H_1)$ increases monotonically with λ .

Proposition

Given α and $\bar{\delta}$, an attack is $\bar{\delta}$ -stealthy regarding the performance index test if the following holds

$$\|\bar{r}_a\|_2^2 = \|\bar{S}a\|_2^2 \leq \bar{\lambda}(\alpha, \bar{\delta})$$

where $\bar{\lambda}(\alpha, \bar{\delta})$ is the maximum value of λ for which (1) is satisfied.

同 ト イ ヨ ト イ ヨ ト

• Known results [Galántai 06]:

Definition

Let M_1 and M_2 be subspaces of C^m . The smallest principal angle $\gamma_1 \in [0, \pi/2]$ between M_1 and M_2 is defined by

$$\cos(\gamma_1) = \max_{u \in M_1} \max_{v \in M_2} |u^H v|$$

subject to $||u|| = ||v|| =$

Lemma

Let $\mathcal{P}_1, \mathcal{P}_2 \in \mathbb{R}^{m \times m}$ be orthogonal projectors of M_1 and M_2 , respectively. Then the following holds

$$\|\mathcal{P}_1\mathcal{P}_2\|_2 = \cos(\gamma_1)$$

くぼと くほと くほと

• Applying the previous results we have:

Proposition

Let γ_1 be the smallest principal angle between $Ker(\bar{H}^{\top})$ and $Im(\tilde{H})$. The residual increment due to a deception attack, \bar{r}_a , following the policy $a = \tilde{H}c$ satisfies

 $\|\bar{r}_a\|_2 \leq \cos \gamma_1 \|a\|_2.$

Proof.

Recall
$$\bar{r}(\bar{z}^a) = \bar{S}\bar{z}^a = \bar{S}\bar{z} + \bar{S}a = \bar{r} + \bar{r}_a$$

 $a = \tilde{H}c \Rightarrow a \in \operatorname{Im}(\tilde{H}) \Rightarrow a = \tilde{K}a.$
 $\bar{r}_a = \bar{S}\tilde{K}a \Rightarrow \|\bar{r}_a\|_2 \le \|\bar{S}\tilde{K}\|_2\|a\|_2.$

伺 ト イヨト イヨト

KTH vetenskap och konst

Theorem

Given the perturbed model \tilde{H} , the false-alarm probability α and the maximum admissible risk $\bar{\delta}$, an attack following the policy $a = \tilde{H}c$ is stealthy regarding the performance index test if

$$\|\boldsymbol{a}\|_2 \leq \beta(\alpha, \bar{\delta})$$
,

where $\beta(\alpha, \overline{\delta}) = \frac{\sqrt{\lambda}(\alpha, \overline{\delta})}{\cos \gamma_1}$.

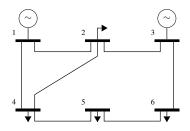
Introduction

- Motivation
- Problem Formulation
- 2 Background
- 3 Stealthy Deception Attacks
- ④ Simulation Example
 - 5 Final Remarks

< ∃ →

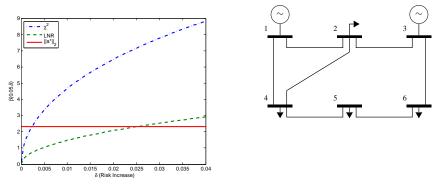
• Consider the 6 bus system with the following branch parameters:

Branch	From bus	To bus	Reactance (pu)	Parameter Error
b1	1	4	0.370	-20%
b2	1	2	0.518	+20%
b3	6	5	1.05	-20%
b4	6	3	0.640	-20%
b5	5	4	0.133	-20%
b6	4	2	0.407	-20%
b7	3	2	0.300	+20%



- The attacker's model \tilde{H} has the correct topology and a $\pm 20\%$ error in the parameters.
- The parameter errors were numerically computed so that $\|\bar{S}\tilde{K}\|_2 = \cos \gamma_1$ is maximized.
- Objective: induce a unit bias in z_{b_1} , *i.e.* have $a_{b_1} = 1$, without being detected.

Simulation Example Worst-Case Uncertainty



- Upper bound on the attack vector as a function of the detection risk.
- The solid line represents the 2-norm of the optimal attack vector a^* constrained by $a_{b_1} = 1$
- The curves denoted as χ^2 and LNR represent the value of $\beta(0.05, \delta)$ for the performance index test and largest normalized residual test.

Introduction

- Motivation
- Problem Formulation
- 2 Background
- 3 Stealthy Deception Attacks
- 4 Simulation Example
- 5 Final Remarks

< ∃ →

- The proposed framework can also be applied to other structured uncertain models such as models
 - with missing rows/measurements;
 - with missing columns;
 - obtained from data analysis.
- The optimization framework for attack synthesis enables the embedding of constraints such as
 - encrypted measurements;
 - pseudo-measurements;
 - finite resources;
- The proposed framework has been applied to a real SCADA/EMS software submitted to the IFAC World Congress 2011